论文标题

贪婪更好:根据迭代为稀疏子空间聚类选择多个邻居

Greedier is Better: Selecting Multiple Neighbors per Iteration for Sparse Subspace Clustering

论文作者

Wu, Jwo-Yuh, Huang, Liang-Chi, Li, Wen-Hsuan, Liu, Chun-Hung, Gau, Rung-Hung

论文摘要

稀疏的子空间聚类(SSC)使用基于贪婪的邻居选择,例如正交匹配追踪(OMP),已被称为流行的计算效率替代品,用于流行的基于L1基于L1的方法。本文提出了一种新的SSC方案,该方案使用广义OMP(GOMP),该方案是OPM的汤,可以根据迭代确定多个邻居,以及一个新的停止规则,只需了解环境信号维度。与常规的OMP相比,在迭代中识别一个邻居,提出的GOMP方法涉及更少的迭代,从而享有较低的算法复杂性。有利地,提议的停止规则没有子空间维度和噪声功率的离线估计。根据半随机模型,就邻居恢复率而言,分析性能保证是为了证明所提出的GOMP的优势是合理的。结果表明,较高的概率,gomp(i)被提出的停止规则停止,并且(ii)比OMP可以检索更多的真实邻居,从而产生更高的最终数据聚类精度。提供了使用综合数据和真实人脸数据的计算机模拟来验证我们的分析研究并证明所提出方法的有效性。

Sparse subspace clustering (SSC) using greedy-based neighbor selection, such as orthogonal matching pursuit (OMP), has been known as a popular computationally-efficient alternative to the popular L1-minimization based methods. This paper proposes a new SSC scheme using generalized OMP (GOMP), a soup-up of OMP whereby multiple neighbors are identified per iteration, along with a new stopping rule requiring nothing more than a knowledge of the ambient signal dimension. Compared to conventional OMP, which identifies one neighbor per iteration, the proposed GOMP method involves fewer iterations, thereby enjoying lower algorithmic complexity; advantageously, the proposed stopping rule is free from off-line estimation of subspace dimension and noise power. Under the semi-random model, analytic performance guarantees, in terms of neighbor recovery rates, are established to justify the advantage of the proposed GOMP. The results show that, with a high probability, GOMP (i) is halted by the proposed stopping rule, and (ii) can retrieve more true neighbors than OMP, consequently yielding higher final data clustering accuracy. Computer simulations using both synthetic data and real human face data are provided to validate our analytic study and evidence the effectiveness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源