论文标题

在彩虹极端问题上

On a rainbow extremal problem for color-critical graphs

论文作者

Chakraborti, Debsoumya, Kim, Jaehoon, Lee, Hyunwoo, Liu, Hong, Seo, Jaehyeon

论文摘要

已经对以下问题进行了广泛的研究:给定$ k $ graphs $ g_1,\ dots,g_k $上的一组常见顶点$ n $,$ g_i $上的哪些条件可确保$ h $的“彩色”副本,即,$ h $ of $ h $的副本最多来自$ g_i $? $ \ sum_ {i \ in [k]} e(g_i)$在给定图形$ h $的五颜六色副本上的下限被keevash,saks,sudakov和verstraëte考虑了。他们定义了$ \ operatorname {ex} _k(n,h)$,是图形的最大边缘总数$ g_1,\ dots,g_k $,在一组尺寸$ n $上没有$ h $的颜色副本。他们完全确定了$ \ operatorname {ex} _k(n,k_r)$ for $ n $,通过显示的,具体取决于$ k $的值,这两个天然结构之一始终是极端结构。此外,他们对每个批判性图形都有相同的猜测,并证明了这是针对三色图形的。 我们证明了他们对4色批判图的猜想,几乎所有$ r $ colital-colitication Graphs当$ r> 4 $时。此外,我们表明,对于每个非颜色的非两部分图,这两个自然结构都不是$ k $的一定值。这回答了Keevash,Saks,Sudakov和Verstraëte的问题。

There has been extensive studies on the following question: given $k$ graphs $G_1,\dots, G_k$ over a common vertex set of size $n$, what conditions on $G_i$ ensures a `colorful' copy of $H$, i.e., a copy of $H$ containing at most one edge from each $G_i$? A lower bound on $\sum_{i\in [k]} e(G_i)$ enforcing a colorful copy of a given graph $H$ was considered by Keevash, Saks, Sudakov, and Verstraëte. They defined $\operatorname{ex}_k(n,H)$ to be the maximum total number of edges of the graphs $G_1,\dots, G_k$ on a common vertex set of size $n$ having no colorful copy of $H$. They completely determined $\operatorname{ex}_k(n,K_r)$ for large $n$ by showing that, depending on the value of $k$, one of the two natural constructions is always the extremal construction. Moreover, they conjectured the same holds for every color-critical graphs and proved it for 3-color-critical graphs. We prove their conjecture for 4-color-critical graphs and for almost all $r$-color-critical graphs when $r > 4$. Moreover, we show that for every non-color-critical non-bipartite graphs, none of the two natural constructions is extremal for certain values of $k$. This answers a question of Keevash, Saks, Sudakov, and Verstraëte.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源