论文标题

PAGP:一个由物理辅助的高斯流程框架,具有主动学习,用于偏微分方程的前进和反问题

PAGP: A physics-assisted Gaussian process framework with active learning for forward and inverse problems of partial differential equations

论文作者

Zhang, Jiahao, Zhang, Shiqi, Lin, Guang

论文摘要

在这项工作中,开发了与给定的物理信息(PDES)合并的高斯过程回归(GPR)模型:物理辅助高斯过程(PAGP)。该模型的目标可以分为两种类型的问题:找到解决方案或发现具有初始和边界条件的给定PDE的未知系数。我们介绍了三种不同的模型:连续时间,离散时间和混合模型。通过我们设计的GP损失功能将给定的物理信息集成到高斯过程模型中。本文基于两种训练标准GP模型的方法提供了三种类型的损失功能。本文的第一部分引入了连续的时间模型,该时间模型将时间域与空间域相同。通过最小化设计的损耗函数,可以与GP超参数共同学习给定PDE中的未知系数。在离散时间模型中,我们首先选择一个时间离散方案来离散时间域。然后,在每个时间步长和方案一起应用PAGP模型,以在最终时间的给定测试点近似PDE解决方案。为了在这种情况下发现未知系数,需要在两个特定时间处进行观察,并构建混合的均方误差函数以获得最佳系数。在最后一部分中,提出了结合连续和离散时间模型的新型混合模型。它合并了连续时间模型的灵活性和离散时间模型的准确性。还讨论了选择具有不同GP损失功能的不同模型的性能。我们的数值部分说明了所提出的PAGP方法的有效性。

In this work, a Gaussian process regression(GPR) model incorporated with given physical information in partial differential equations(PDEs) is developed: physics-assisted Gaussian processes(PAGP). The targets of this model can be divided into two types of problem: finding solutions or discovering unknown coefficients of given PDEs with initial and boundary conditions. We introduce three different models: continuous time, discrete time and hybrid models. The given physical information is integrated into Gaussian process model through our designed GP loss functions. Three types of loss function are provided in this paper based on two different approaches to train the standard GP model. The first part of the paper introduces the continuous time model which treats temporal domain the same as spatial domain. The unknown coefficients in given PDEs can be jointly learned with GP hyper-parameters by minimizing the designed loss function. In the discrete time models, we first choose a time discretization scheme to discretize the temporal domain. Then the PAGP model is applied at each time step together with the scheme to approximate PDE solutions at given test points of final time. To discover unknown coefficients in this setting, observations at two specific time are needed and a mixed mean square error function is constructed to obtain the optimal coefficients. In the last part, a novel hybrid model combining the continuous and discrete time models is presented. It merges the flexibility of continuous time model and the accuracy of the discrete time model. The performance of choosing different models with different GP loss functions is also discussed. The effectiveness of the proposed PAGP methods is illustrated in our numerical section.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源