论文标题

上下文注意机制,基于SRGAN的介绍系统,以消除图像中断

Contextual Attention Mechanism, SRGAN Based Inpainting System for Eliminating Interruptions from Images

论文作者

Darapaneni, Narayana, Kherde, Vaibhav, Rao, Kameswara, Nikam, Deepali, Katdare, Swanand, Shukla, Anima, Lomate, Anagha, Paduri, Anwesh Reddy

论文摘要

新的替代方法是利用图像分类和计算机视觉技术来使用深度学习来对任何图像进行分配。通常,图像介绍是重建或重建任何可能是照片或油/丙烯酸绘画的破碎图像的任务。随着人工智能领域的发展,该主题在AI爱好者中变得很流行。通过我们的方法,我们提出了使用完整的机器学习方法而不是常规的基于应用程序的方法的初始端到端管道,以供介入图像。我们首先使用Yolo模型自动识别和本地化我们希望从图像中删除的对象。使用从模型获得的结果,我们可以生成相同的掩码。之后,我们将蒙版的图像和原始图像提供给GAN模型,该模型使用上下文注意方法填充该区域。它由两个发电机网络和两个歧视网络组成,也称为粗到加密网络结构。当全局歧视器将整个图像作为输入中占据时,两个发电机使用完全卷积网络,而本地歧视器则将填充区域的控制作为输入。提出了上下文注意机制,以有效地从遥远的空间位置借用邻居信息来重建缺失的像素。我们实施的第三部分使用SRGAN将贴有原始图像解析为原始大小。我们的作品灵感来自纸张自由形式图像,并以封闭式的卷积和生成图像和上下文的注意。

The new alternative is to use deep learning to inpaint any image by utilizing image classification and computer vision techniques. In general, image inpainting is a task of recreating or reconstructing any broken image which could be a photograph or oil/acrylic painting. With the advancement in the field of Artificial Intelligence, this topic has become popular among AI enthusiasts. With our approach, we propose an initial end-to-end pipeline for inpainting images using a complete Machine Learning approach instead of a conventional application-based approach. We first use the YOLO model to automatically identify and localize the object we wish to remove from the image. Using the result obtained from the model we can generate a mask for the same. After this, we provide the masked image and original image to the GAN model which uses the Contextual Attention method to fill in the region. It consists of two generator networks and two discriminator networks and is also called a coarse-to-fine network structure. The two generators use fully convolutional networks while the global discriminator gets hold of the entire image as input while the local discriminator gets the grip of the filled region as input. The contextual Attention mechanism is proposed to effectively borrow the neighbor information from distant spatial locations for reconstructing the missing pixels. The third part of our implementation uses SRGAN to resolve the inpainted image back to its original size. Our work is inspired by the paper Free-Form Image Inpainting with Gated Convolution and Generative Image Inpainting with Contextual Attention.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源