论文标题

使用多层薄膜的深度学习单发计算光谱仪

Deep learning-based single-shot computational spectrometer using multilayer thin films

论文作者

Kim, Cheolsun, Park, Dongju, Lee, Jioh, Lee, Heung-No

论文摘要

计算光谱仪具有移动应用潜力,例如现场检测和自我诊断,通过提供紧凑的尺寸,快速运行时间,高分辨率,较宽的工作范围和低成本生产。尽管这些光谱仪已经进行了广泛的研究,但示范限于一些直接光谱的例子。这项研究表明,使用多层薄膜滤光片阵列,基于深度学习(DL)的狭窄和宽光谱的单发计算光谱仪。为了测量光强度,该设备是通过连接使用晶片级模具光刻工艺制造的滤器阵列来构建的,并将其构建到互补的金属氧化物 - 氧化物 - 氧化物 - 氧化型图像传感器上。所有强度都是从单一曝光捕获的单色图像中提取的。用于频谱重建的DL架构,其中包括密集层和带有残留连接的U-NET主链。测得的强度被馈入DL体系结构以作为光谱重建。我们重建了323个连续光谱,平均均方根误差为0.0288,在500-850 nm波长范围内,间距为1 nm。我们的计算光谱仪达到了紧凑的尺寸,快速测量时间,高分辨率和较宽的工作范围。

Computational spectrometers have mobile application potential, such as on-site detection and self-diagnosis, by offering compact size, fast operation time, high resolution, wide working range, and low-cost production. Although these spectrometers have been extensively studied, demonstrations are confined to a few examples of straightforward spectra. This study demonstrates deep learning (DL)-based single-shot computational spectrometer for narrow and broad spectra using a multilayer thin-film filter array. For measuring light intensities, the device was built by attaching the filter array, fabricated using a wafer-level stencil lithography process, to a complementary metal-oxide-semiconductor image sensor. All the intensities were extracted from a monochrome image captured with a single exposure. A DL architecture comprising a dense layer and a U-Net backbone with residual connections was employed for spectrum reconstruction. The measured intensities were fed into the DL architecture for reconstruction as spectra. We reconstructed 323 continuous spectra with an average root mean squared error of 0.0288 in a 500-850 nm wavelength range with 1-nm spacing. Our computational spectrometer achieved a compact size, fast measuring time, high resolution, and wide working range.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源