论文标题

更快的tad:在统一网络中使用提案生成和分类的时间动作检测

Faster-TAD: Towards Temporal Action Detection with Proposal Generation and Classification in a Unified Network

论文作者

Chen, Shimin, Chen, Chen, Li, Wei, Tao, Xunqiang, Guo, Yandong

论文摘要

时间动作检测(TAD)旨在检测未修剪视频中动作实例的语义标签和边界。当前的主流方法是多步解决方案,其效率和灵活性不足。在本文中,我们通过重新设置更快的rcnn架构来提出一个统一的TAD网络,称为更快的TAD。为了解决TAD的独特难度,我们对原始框架进行了重要改进。我们提出了一个新的上下文自适应提案模块和创新的假港口生成块。更重要的是,我们使用原子动作功能来提高性能。更快的TAD简化了TAD的管道,并在许多基准测试中获得了出色的性能,即ActivityNet-1.3(40.01%地图),HACS段(38.39%地图),Soccernet-action-action Spotion发现(54.09%的地图)。它的表现可以超过现有的单网络检测器的幅度很大。

Temporal action detection (TAD) aims to detect the semantic labels and boundaries of action instances in untrimmed videos. Current mainstream approaches are multi-step solutions, which fall short in efficiency and flexibility. In this paper, we propose a unified network for TAD, termed Faster-TAD, by re-purposing a Faster-RCNN like architecture. To tackle the unique difficulty in TAD, we make important improvements over the original framework. We propose a new Context-Adaptive Proposal Module and an innovative Fake-Proposal Generation Block. What's more, we use atomic action features to improve the performance. Faster-TAD simplifies the pipeline of TAD and gets remarkable performance on lots of benchmarks, i.e., ActivityNet-1.3 (40.01% mAP), HACS Segments (38.39% mAP), SoccerNet-Action Spotting (54.09% mAP). It outperforms existing single-network detector by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源