论文标题

HESSIAN无反转的精确二阶方法,用于分布式共识优化

A Hessian inversion-free exact second order method for distributed consensus optimization

论文作者

Jakovetic, Dusan, Krejic, Natasa, Jerinkic, Natasa Krklec

论文摘要

我们考虑了标准分布式共识优化问题,其中一组通过无方向网络连接的代理最大程度地减少了其各个本地强劲凸成本的总和。事实证明,乘数ADMM和乘数PMM的近端方法交替方向方法是设计精确分布式二阶方法的有效框架,涉及计算当地成本Hessians。但是,现有方法涉及在每次迭代处的本地Hessian倒置的明确计算,当优化变量的尺寸较大时,这可能非常昂贵。在本文中,我们开发了一种新的方法,称为Indo Nextact Newton方法进行分布式优化,以减轻对Hessian反向计算的需求。 Indo遵循PMM框架,但与现有工作不同,通过通用固定点方法(例如Jacobi Overrelaxation)近似牛顿方向,这不涉及Hessian倒置。我们证明了Indo的确切全局线性收敛,并提供了有关牛顿方向计算中不确定程度如何影响整体方法收敛因子的分析研究。在几个真实数据集上进行的数值实验表明,Indos速度作为最新方法的状态迭代的状态速度或更好,因此具有可比的通信成本。同时,对于足够大的优化问题尺寸n(即使在几百个数百个n处为n处),印度的计算成本至少达到了一个数量级。

We consider a standard distributed consensus optimization problem where a set of agents connected over an undirected network minimize the sum of their individual local strongly convex costs. Alternating Direction Method of Multipliers ADMM and Proximal Method of Multipliers PMM have been proved to be effective frameworks for design of exact distributed second order methods involving calculation of local cost Hessians. However, existing methods involve explicit calculation of local Hessian inverses at each iteration that may be very costly when the dimension of the optimization variable is large. In this paper we develop a novel method termed INDO Inexact Newton method for Distributed Optimization that alleviates the need for Hessian inverse calculation. INDO follows the PMM framework but unlike existing work approximates the Newton direction through a generic fixed point method, e.g., Jacobi Overrelaxation, that does not involve Hessian inverses. We prove exact global linear convergence of INDO and provide analytical studies on how the degree of inexactness in the Newton direction calculation affects the overall methods convergence factor. Numerical experiments on several real data sets demonstrate that INDOs speed is on par or better as state of the art methods iterationwise hence having a comparable communication cost. At the same time, for sufficiently large optimization problem dimensions n (even at n on the order of couple of hundreds), INDO achieves savings in computational cost by at least an order of magnitude.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源