论文标题
统一的安德森本地化在一维浮雕地图中
Uniform Anderson Localization in One-Dimensional Floquet Maps
论文作者
论文摘要
我们在离散的量子图动力学中研究Anderson的定位,在一个维度上,在单位圆圈上的邻居高强度$θ$ $θ$,而拟元素的定位。我们证明,局部相位场中的强障碍会产生均匀的光谱,无处可占据整个单元圆。由此产生的本征态被指数定位。值得注意的是,此Anderson本地化是通用的,因为所有特征态都有一个和相同的本地化长度$ l_ {loc} $。我们提出了一个精确的理论,用于计算本地化长度作为跳跃的函数,$ 1/l_ \ text {loc} = \ left | \ ln \ lest(| \ sin(| \ sin(θ)| \ right)\ right | $,这是通过变化的零和无限在零之间的可调式| $。
We study Anderson localization in a discrete-time quantum map dynamics in one dimension with nearest-neighbor hopping strength $θ$ and quasienergies located on the unit circle. We demonstrate that strong disorder in a local phase field yields a uniform spectrum gaplessly occupying the entire unit circle. The resulting eigenstates are exponentially localized. Remarkably this Anderson localization is universal as all eigenstates have one and the same localization length $L_{loc}$. We present an exact theory for the calculation of the localization length as a function of the hopping, $1/L_\text{loc}=\left|\ln\left(|\sin(θ)|\right)\right|$, that is tunable between zero and infinity by variation of the hopping $θ$.