论文标题
通过深度学习,消除中性氢强度映射调查的前景减法中的主要光束效应
Eliminating Primary Beam Effect in Foreground Subtraction of Neutral Hydrogen Intensity Mapping Survey with Deep Learning
论文作者
论文摘要
在中性氢(HI)强度映射(IM)调查中,宇宙学信号的前景污染极为严重,射电望远镜引起的系统效应本身会进一步加剧了减去前景的困难。在这项工作中,我们研究了深度学习方法(在此处是3D U-NET算法)是否可以在考虑望远镜的主要光束引起的系统效应时在前景减法中起关键作用。我们将两个光束模型(即高斯光束模型)视为简单的情况,而余弦梁模型是复杂的情况。传统的主组件分析(PCA)方法被用作比较,更重要的是,作为减少天空图动态范围的U-NET方法的预处理步骤。我们发现,在高斯光束的情况下,PCA方法可以有效地清洁前景。但是,PCA方法无法处理余弦梁引起的系统效应,额外的U-NET方法可以显着改善结果。为了显示PCA和U-NET方法能够恢复HI信号的效果,我们还会在执行前景减法后得出HI角功率谱以及HI 2D功率谱。发现,就高斯梁而言,与原始HI地图使用U-NET的一致性要比使用PCA $ 27.4 \%$的一致性更好,而对于Cosine Beam,使用U-NET的一致性比使用PCA $ 144.8 \%$的一致性要好。因此,基于U-NET的前景减法可以有效消除望远镜的一束梁效应,并为恢复HI功率谱的新灯提供了新的光,以进行将来的HI IM实验。
In the neutral hydrogen (HI) intensity mapping (IM) survey, the foreground contamination on the cosmological signals is extremely severe, and the systematic effects caused by radio telescopes themselves further aggravate the difficulties in subtracting foreground. In this work, we investigate whether the deep learning method, concretely the 3D U-Net algorithm here, can play a crucial role in foreground subtraction when considering the systematic effect caused by the telescope's primary beam. We consider two beam models, i.e., the Gaussian beam model as a simple case and the Cosine beam model as a sophisticated case. The traditional principal component analysis (PCA) method is employed as a comparison and, more importantly, as the preprocessing step for the U-Net method to reduce the sky map dynamic range. We find that in the case of the Gaussian beam, the PCA method can effectively clean the foreground. However, the PCA method cannot handle the systematic effect induced by the Cosine beam, and the additional U-Net method can improve the result significantly. In order to show how well the PCA and U-Net methods can recover the HI signals, we also derive the HI angular power spectra, as well as the HI 2D power spectra, after performing the foreground subtractions. It is found that, in the case of Gaussian beam, the concordance with the original HI map using U-Net is better than that using PCA by $27.4\%$, and in the case of Cosine beam, the concordance using U-Net is better than that using PCA by $144.8\%$. Therefore, the U-Net based foreground subtraction can efficiently eliminate the telescope primary beam effect and shed new light on recovering the HI power spectrum for future HI IM experiments.