论文标题

使用量子神经网络(QNN)对NEQR处理的经典图像进行分类

Classification of NEQR Processed Classical Images using Quantum Neural Networks (QNN)

论文作者

Ganguly, Santanu

论文摘要

如今,量子神经网络(QNN)被解释为具有可训练连续参数的任何量子电路。这项工作建立在作者以前的作品基础上,并用新颖的(NEQR)处理经典数据的新型增强量子表示QNN来解决QNN,其中主成分分析(PCA)和预测的量子内核特征(PQK)先前已由作者研究,作为对同一经典数据集的量子优势的途径。对于每种情况,使用PCA将时尚数据集缩减为量子数据,将经典NN轻松胜过QNN。但是,我们通过使用PQK证明了量子优势,其中量子模型的精度超过90%的精度超过了与第一种情况相同的训练数据集的经典对应率。在当前的工作中,我们使用馈入QNN的相同数据集并将其与经典NN模型的性能进行比较。我们构建了一个NEQR模型电路,以预处理相同的数据并将图像馈送到QNN中。我们的结果表明,在NEQR的QNN性能超过没有NEQR的QNN的情况下,边际改善(仅约5.0%)。我们得出的结论是,鉴于计算成本和与运行NEQR相关的大量电路深度,此特定量子图像处理(QIMP)算法提供的优势至少对于经典图像数据集而言是值得怀疑的。当今,没有实际的量子计算硬件平台可以支持运行NEQR所需的电路深度,即使我们的玩具经典数据集的减小图像尺寸也是如此。

A quantum neural network (QNN) is interpreted today as any quantum circuit with trainable continuous parameters. This work builds on previous works by the authors and addresses QNN for image classification with Novel Enhanced Quantum Representation of (NEQR) processed classical data where Principal component analysis (PCA) and Projected Quantum Kernel features (PQK) were investigated previously by the authors as a path to quantum advantage for the same classical dataset. For each of these cases the Fashion-MNIST dataset was downscaled using PCA to convert into quantum data where the classical NN easily outperformed the QNN. However, we demonstrated quantum advantage by using PQK where quantum models achieved more than ~90% accuracy surpassing their classical counterpart on the same training dataset as in the first case. In this current work, we use the same dataset fed into a QNN and compare that with performance of a classical NN model. We built an NEQR model circuit to pre-process the same data and feed the images into the QNN. Our results showed marginal improvements (only about ~5.0%) where the QNN performance with NEQR exceeded the performance of QNN without NEQR. We conclude that given the computational cost and the massive circuit depth associated with running NEQR, the advantage offered by this specific Quantum Image Processing (QIMP) algorithm is questionable at least for classical image dataset. No actual quantum computing hardware platform exists today that can support the circuit depth needed to run NEQR even for the reduced image sizes of our toy classical dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源