论文标题

如何构建多模光纤的光学倒数

How to build the optical inverse of a multimode fibre

论文作者

Būtaitė, Unė G., Kupianskyi, Hlib, Čižmár, Tomáš, Phillips, David B.

论文摘要

当光通过多模光纤(MMF)传播时,它所携带的空间信息会扰乱。波前的塑形可以消除这种争夺的,通常一次是一种空间模式 - 使MMFs作为超薄微型内镜的部署。在这项工作中,我们通过展示如何同时散布所有空间模式,从而超越了串行波沿形状。我们介绍了一个被动的多散射元素 - 通过反向设计过程制作 - 与MMF互补,并消除其光学效果。这种光学逆变器使通过MMFS的单发宽大成像和超分辨率成像成为可能。我们的设计由一系列衍射元素组成,可以从多平面光转换的角度来理解,也可以作为具有物理启发的深层衍射神经网络。这种物理体系结构可以超越最先进的电子神经网络,而该网络负责,该网络保留了流过它的光学信号的相位和相干信息,因为它保留了散布光。在这里,我们通过数值模拟证明了我们的MMF倒置概念,并有效地排序和无缩合到〜400个步骤索引纤维模式,从而在距远端纤维方面任意距离的场景上改革了场景的不一致图像。我们还描述了我们的光学逆变器如何动态适应,以通过具有一系列实验逼真的TMS的柔性纤维观察 - 通过将光学记忆效应塑造成我们的设计结构,从而使其成为可能。尽管复杂,但我们的反转方案基于当前的制造技术,因此可以在不久的将来实现。除了通过散射介质进行成像外,这些概念还为经典和量子光子学领域的光学多路复用,通信和计算开辟了一系列新途径。

When light propagates through a multimode optical fibre (MMF), the spatial information it carries is scrambled. Wavefront shaping can undo this scrambling, typically one spatial mode at a time - enabling deployment of MMFs as ultra-thin micro-endoscopes. In this work we go beyond serial wavefront shaping by showing how to simultaneously unscramble all spatial modes emerging from an MMF in parallel. We introduce a passive multiple-scattering element - crafted through the process of inverse design - that is complementary to an MMF and undoes its optical effects. This optical inverter makes possible both single-shot wide-field imaging and super-resolution imaging through MMFs. Our design consists of a cascade of diffractive elements, and can be understood from the perspective of both multi-plane light conversion, and as a physically inspired deep diffractive neural network. This physical architecture can outperform state-of-the-art electronic neural networks tasked with unscrambling light, as it preserves the phase and coherence information of the optical signals flowing through it. Here we demonstrate our MMF inversion concept through numerical simulations, and efficiently sort and unscramble up to ~400 step-index fibre modes, reforming incoherent images of scenes at arbitrary distances from the distal fibre facet. We also describe how our optical inverter can dynamically adapt to see through flexible fibres with a range of experimentally realistic TMs - made possible by moulding optical memory effects into the structure of our design. Although complex, our inversion scheme is based on current fabrication technology so could be realised in the near future. Beyond imaging through scattering media, these concepts open up a range of new avenues for optical multiplexing, communications and computation in the realms of classical and quantum photonics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源