论文标题

Creime:地震识别和幅度估计的卷积复发模型

CREIME: A Convolutional Recurrent model for Earthquake Identification and Magnitude Estimation

论文作者

Chakraborty, Megha, Fenner, Darius, Li, Wei, Faber, Johannes, Zhou, Kai, Ruempker, Georg, Stoecker, Horst, Srivastava, Nishtha

论文摘要

地震参数(例如大小)的检测和快速表征在地震学中至关重要,尤其是在地震预警(EEW)等应用中。传统上,算法(例如STA/LTA)用于事件检测,而从第一个p-arrival数据的1-3秒计算出的频率或振幅域参数有时用于提供(体波)幅度的第一个估计值。由于人类专家参与参数确定的广泛参与,通常发现这些方法是不够的。此外,这些方法对信号与噪声比率很敏感,并且可能会根据选择参数的方式导致错误或错过的警报。因此,我们提出了一个多任务深度学习模型,用于地震识别和幅度估计(CREIME)的卷积复发模型,即:(i)从背景地震噪声中检测第一个地震信号,(ii)确定第一个p到达时间以及(iii)使用原始的3型组件波形数据估算单个单个站点的幅度。考虑到,速度在EEW中是本质的,我们最多使用两秒钟的P波信息,据我们所知,与以前的研究相比,这是一个明显较小的数据窗口(5秒的窗口,最多可P波数据)。为了检查CREIME的鲁棒性,我们在两个独立的数据集上对其进行了测试,并发现事件与噪声歧视的平均准确度为98%,并且能够估算首先PRAIVE时间和局部幅度,平均均方根误差分别为0.13秒和0.65个单位。我们还通过在相同的数据上训练CREIME架构与其他基线模型的体系结构以及传统算法(例如STA/LTA)进行了比较,并表明我们的体系结构的表现优于这些方法。

The detection and rapid characterisation of earthquake parameters such as magnitude are of prime importance in seismology, particularly in applications such as Earthquake Early Warning (EEW). Traditionally, algorithms such as STA/LTA are used for event detection, while frequency or amplitude domain parameters calculated from 1-3 seconds of first P-arrival data are sometimes used to provide a first estimate of (body wave) magnitude. Owing to extensive involvement of human experts in parameter determination, these approaches are often found to be insufficient. Moreover, these methods are sensitive to the signal to noise ratio and may often lead to false or missed alarms depending on the choice of parameters. We, therefore, propose a multitasking deep learning model the Convolutional Recurrent model for Earthquake Identification and Magnitude Estimation (CREIME) that: (i) detects the first earthquake signal, from background seismic noise, (ii) determines first P arrival time as well as (iii) estimates the magnitude using the raw 3-component waveform data from a single station as model input. Considering, speed is of essence in EEW, we use up to two seconds of P-wave information which, to the best of our knowledge, is a significantly smaller data window (5 second window with up to of P wave data) compared to the previous studies. To examine the robustness of CREIME we test it on two independent datasets and find that it achieves an average accuracy of 98 percent for event vs noise discrimination and is able to estimate first P arrival time and local magnitude with average root mean squared errors of 0.13 seconds and 0.65 units, respectively. We also compare CREIME architecture with architectures of other baseline models, by training them on the same data, and also with traditional algorithms such as STA/LTA, and show that our architecture outperforms these methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源