论文标题

为Covid-19实施实时的基于Yolov5的社会距离测量系统

Implementing a Real-Time, YOLOv5 based Social Distancing Measuring System for Covid-19

论文作者

Darapaneni, Narayana, Kumar, Shrawan, Krishnan, Selvarangan, K, Hemalatha, Rajagopal, Arunkumar, Nagendra, Paduri, Anwesh Reddy

论文摘要

这项工作的目的是使用高架视图的观点提供基于Yolov5的深度学习社会距离监控框架。此外,我们已经开发了一个自定义的模型Yolov5修改的CSP(跨阶段部分网络),并在没有传输学习的情况下评估了可可和Vistrone数据集的性能。我们的发现表明,发达的模型成功地识别了违反社会距离的个人。在训练模型300个时期后,在可可数据集上观察到修改后的瓶颈CSP的精度为81.7%,而对于相同的时期,默认的yolov5模型在转移学习方面达到了80.1%的精度。这显示了我们修改的瓶颈CSP模型的准确性提高。对于Visdrone数据集,我们能够在某些班级中获得高达56.5%的准确性,尤其是使用默认的Yolov5s模型的30个时代的人和转移学习的人和行人的准确性40%。尽管修改后的瓶颈CSP能够比默认模型稍微表现出色,而某些类别的精度得分高达58.1%,而人和行人的精度约为40.4%。

The purpose of this work is, to provide a YOLOv5 deep learning-based social distance monitoring framework using an overhead view perspective. In addition, we have developed a custom defined model YOLOv5 modified CSP (Cross Stage Partial Network) and assessed the performance on COCO and Visdrone dataset with and without transfer learning. Our findings show that the developed model successfully identifies the individual who violates the social distances. The accuracy of 81.7% for the modified bottleneck CSP without transfer learning is observed on COCO dataset after training the model for 300 epochs whereas for the same epochs, the default YOLOv5 model is attaining 80.1% accuracy with transfer learning. This shows an improvement in accuracy by our modified bottleneck CSP model. For the Visdrone dataset, we are able to achieve an accuracy of upto 56.5% for certain classes and especially an accuracy of 40% for people and pedestrians with transfer learning using the default YOLOv5s model for 30 epochs. While the modified bottleneck CSP is able to perform slightly better than the default model with an accuracy score of upto 58.1% for certain classes and an accuracy of ~40.4% for people and pedestrians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源