论文标题

可变速度场的完整通量方案:对流扩散方程与速度场的泊松方程之间的耦合

Complete flux scheme for variable velocity fields: coupling between the advection-diffusion equation and the Poisson equation for the velocity field

论文作者

Cheng, Hanz Martin, Boonkkamp, Jan ten Thije

论文摘要

在这项工作中,我们考虑了一个对流扩散方程,并与速度场的泊松方程相连。这种类型的耦合通常在血浆物理或多孔介质流引起的模型中遇到。这项工作的目的是建立完整的通量方案(通过考虑源术语的贡献来改善Scharfetter-Gummel方案的改进),以便其二阶收敛(在Péclet数字中是统一的)将这些模型归结为这些模型。这是通过考虑速度场的分段线性近似来完成的,然后将其用于定义向上调整的péclet编号。

In this work, we consider an advection-diffusion equation, coupled to a Poisson equation for the velocity field. This type of coupling is typically encountered in models arising from plasma physics or porous media flow. The aim of this work is to build upon the complete flux scheme (an improvement over the Scharfetter-Gummel scheme by considering the contribution of the source term), so that its second-order convergence, which is uniform in Péclet numbers, carries over to these models. This is done by considering a piecewise linear approximation of the velocity field, which is then used for defining upwind-adjusted Péclet numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源