论文标题

部分可观测时空混沌系统的无模型预测

Ramsey non-goodness involving books

论文作者

Fan, Chunchao, Lin, Qizhong

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In 1983, Burr and Erdős initiated the study of Ramsey goodness problems.Nikiforov and Rousseau (2009) resolved almost all goodness questions raised by Burr and Erdős, in which the bounds on the parameters are of tower type since their proofs rely on the regularity lemma. Let $B_{k,n}$ be the book graph on $n$ vertices which consists of $n-k$ copies of $K_{k+1}$ all sharing a common $K_k$, and let $H=K_p(a_1,\dots,a_{p})$ be the complete $p$-partite graph with parts of sizes $a_1,\dots,a_{p}$. Recently, avoiding use of the regularity lemma, Fox, He and Wigderson (2021) revisit several Ramsey goodness results involving books. They comment that it would be very interesting to see how far one can push these ideas. In particular, they conjecture that for all integers $k, p, t\ge 2$, there exists some $δ>0$ such that for all $n\ge 1$, $1\leq a_1\le\cdots\le a_{p-1}\le t$ and $a_p \le δn$, we have $r(H, B_{k,n})= (p-1)(n-1)+d_k(n,K_{a_1,a_2})+1,$ where $d_k(n,K_{a_1,a_2})$ is the maximum $d$ for which there is an $(n+d-1)$-vertex $K_{a_1,a_2}$-free graph in which at most $k-1$ vertices have degree less than $d$.They verify the conjecture when $a_1=a_2=1$. Building upon the work of Fox et al. (2021), we make a substantial step by showing that the conjecture "roughly" holds if $a_1=1$ and $a_2|(n-1-k)$, i.e. $a_2$ divides $n-1-k$. Moreover, avoiding use of the regularity lemma, we prove that for every $k, a\geq 1$ and $p\ge2$, there exists $δ>0$ such that for all large $n$ and $b\le δ\ln n$, $r(K_p(1,a,b,\dots,b), B_{k,n})= (p-1)(n-1)+k(p-1)(a-1)+1$ if $a|(n-1-k)$, where the case when $a=1$ has been proved by Nikiforov and Rousseau (2009) using the regularity lemma. The bounds on $1/δ$ we obtain are not of tower-type since our proofs do not rely on the regularity lemma.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源