论文标题

部分可观测时空混沌系统的无模型预测

Geometric aspects of Young Integral: decomposition of flows

论文作者

Lima, Lourival, Ruffino, Paulo, Catuogno, Pedro

论文摘要

在本文中,我们研究由$α$-Hölder轨迹驱动的年轻微分方程(YDE)产生的动力学的几何方面,其$α\ in(1/2,1)$。我们在这种低规律性的情况下介绍了许多特性和几何结构:年轻的ITôDemortical公式,主纤维束的水平升力,平行运输,协变量衍生物,发展和反开发等。我们这里的主要应用是YDES产生的流量的几何分解,该流量是根据互补分布(是否可以整合)产生的差异性产生的。这种分解的存在证明是基于Castrequini和Catuogno证明的$α$ -H {Ö} lder路径的年轻Itô-Kunita公式(Chaos Solitons fractals,2022年)。

In this paper we study geometric aspects of dynamics generated by Young differential equations (YDE) driven by $α$-Hölder trajectories with $α\in (1/2, 1)$. We present a number of properties and geometrical constructions on this low regularity context: Young Itô geometrical formula, horizontal lift in principal fibre bundles, parallel transport, covariant derivative, development and anti-development, among others. Our main application here is a geometrical decomposition of flows generated by YDEs according to diffeomorphisms generated by complementary distributions (integrable or not). The proof of existence of this decomposition is based on an Young Itô-Kunita formula for $α$-H{ö}lder paths proved by Castrequini and Catuogno (Chaos Solitons Fractals, 2022).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源