论文标题

使用总参数心血管系统模型对主动脉瓣狭窄的动态模拟,其依赖流动阀压力损失特性

Dynamic simulation of aortic valve stenosis using a lumped parameter cardiovascular system model with flow regime dependent valve pressure loss characteristics

论文作者

Laubscher, Ryno, Liebenberg, Jacques, Herbst, Philip

论文摘要

瓣膜心脏病在世界贫困地区(例如南方非洲)越来越关注,声称与心血管疾病有关的总死亡人数超过31%。对瓣膜物体的反流和阻塞性病变对阀体的影响的能力可以帮助临床医生准备个性化治疗。在目前的工作中,开发了人类心血管系统的多室总参数模型,采用新提出的阀门建模方法,该方法涉及几何形状和流动状态依赖性压力降低以及瓣膜尖头运动。该模型应用于使用典型的人类心血管参数研究各种程度的主动脉狭窄。使用先前发表的阀门建模方法将其与所提出模型产生的结果进行比较,并将两种结果与典型的局部和全球生理参数进行比较,例如文献中发现的左心室收缩压,峰值和平均主动脉瓣压力下降和平均主动脉瓣压力下降和静脉静脉合同。结果表明,预测预期的先前发表的阀模型会分别严重震撼的峰值和平均变形压力下降约47%和30%,而新提出的模型则预测峰压力下降20%,并且超出预测平均压力下降7%。

Valvular heart diseases are growing concern in impoverished parts of the world, such as Southern-Africa, claiming more than 31 % of total deaths related to cardiovascular diseases. The ability to model the effects of regurgitant and obstructive lesions on the valve body can assist clinicians in preparing personalised treatments. In the present work, a multi-compartment lumped parameter model of the human cardiovascular system is developed, with a newly proposed valve modelling approach which accounts for geometry and flow regime dependent pressure drops along with the valve cusp motion. The model is applied to study various degrees of aortic stenosis using typical human cardiovascular parameters. The results generated with the proposed model, are compared to predictions using previously published valve modelling approaches and both sets of results are compared to typical local and global physiological parameters found in literature such left-ventricular systolic pressures, peak and mean aortic valve pressure drops and vena contracta velocities. The results show that the previously published valve models under predicts expected severely stenosed peak and mean transvalvular pressure drops by approximately 47% and 30% respectively, whereas the newly proposed model under predicts the peak pressure drop by 20% and over predicts mean pressure drop by 7%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源