论文标题

连续手语识别的多尺度时间网络

Multi-scale temporal network for continuous sign language recognition

论文作者

Zhu, Qidan, Li, Jing, Yuan, Fei, Gan, Quan

论文摘要

连续的手语识别(CSLR)是一项具有挑战性的研究任务,因为对手语数据的时间顺序缺乏准确的注释。最近流行的用法是基于CSLR的“ CNN + RNN”的混合模型。但是,当在这些作品中提取时间特征时,大多数方法都使用固定的时间接受字段,并且不能很好地提取每个手语单词的时间功能。为了获得更准确的时间特征,本文提出了一个多尺度的时间网络(MSTNET)。网络主要由三个部分组成。重新连接和两个完全连接的(FC)层构成框架特征提取部分。时间方面的特征提取零件首先使用拟议的多尺度时间块(MST-Block)提高不同尺度的时间功能学习,以提高时间建模能力,然后进一步编码变压器模块的不同尺度的时间特征,以获得更准确的时间特征。最后,拟议的多级连接派时间分类(CTC)损失零件用于训练以获得识别结果。多级CTC损失可以更好地学习和更新CNN中的浅网络参数,该方法没有参数增加,并且可以灵活地嵌入其他模型中。两个公开可用数据集的实验结果表明,我们的方法可以在没有任何先验知识的情况下以端到端的方式有效地提取手语特征,从而提高CSLR的准确性并实现竞争成果。

Continuous Sign Language Recognition (CSLR) is a challenging research task due to the lack of accurate annotation on the temporal sequence of sign language data. The recent popular usage is a hybrid model based on "CNN + RNN" for CSLR. However, when extracting temporal features in these works, most of the methods using a fixed temporal receptive field and cannot extract the temporal features well for each sign language word. In order to obtain more accurate temporal features, this paper proposes a multi-scale temporal network (MSTNet). The network mainly consists of three parts. The Resnet and two fully connected (FC) layers constitute the frame-wise feature extraction part. The time-wise feature extraction part performs temporal feature learning by first extracting temporal receptive field features of different scales using the proposed multi-scale temporal block (MST-block) to improve the temporal modeling capability, and then further encoding the temporal features of different scales by the transformers module to obtain more accurate temporal features. Finally, the proposed multi-level Connectionist Temporal Classification (CTC) loss part is used for training to obtain recognition results. The multi-level CTC loss enables better learning and updating of the shallow network parameters in CNN, and the method has no parameter increase and can be flexibly embedded in other models. Experimental results on two publicly available datasets demonstrate that our method can effectively extract sign language features in an end-to-end manner without any prior knowledge, improving the accuracy of CSLR and achieving competitive results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源