论文标题
在模拟与现实之间的差距上跨越上像素级的掌握
On-Policy Pixel-Level Grasping Across the Gap Between Simulation and Reality
论文作者
论文摘要
对于机器人来说,在混乱的场景中抓住检测是一项非常具有挑战性的任务。生成合成抓取数据是训练和测试抓握方法的流行方式,DEX-NET和GRASPNET也是如此。然而,这些方法在3D合成对象模型上生成了训练掌握,但是在具有不同分布的图像或点云上进行评估,从而降低了由于稀疏的掌握标签和协变量移动而在实际场景上的性能。为了解决现有的问题,我们提出了一种新型的policy Grasp检测方法,该方法可以使用RGB-D图像生成的密集像素级掌握标签对相同的分布进行训练和测试。提出了一种并行深入的掌握生成(PDG生成)方法,以通过并行的投影点的新成像模型生成平行的深度图像;然后,该方法为每个像素生成多个候选抓地力,并通过扁平度检测,力闭合度量和碰撞检测获得可靠的抓地力。然后,构建并释放了大型综合像素级姿势数据集(PLGP数据集)。该数据集使用先前的数据集和稀疏的Grasp样本区别,是第一个像素级抓取数据集,其上的分布分布基于深度图像生成了grasps。最后,我们通过数据增强过程进行不平衡训练,构建和测试一系列像素级的抓取检测网络,该过程以输入RGB-D图像的方式学习抓握姿势。广泛的实验表明,我们的policy grasp方法可以在很大程度上克服模拟与现实之间的差距,并实现最新的性能。代码和数据可在https://github.com/liuchunsense/plgp-dataset上提供。
Grasp detection in cluttered scenes is a very challenging task for robots. Generating synthetic grasping data is a popular way to train and test grasp methods, as is Dex-net and GraspNet; yet, these methods generate training grasps on 3D synthetic object models, but evaluate at images or point clouds with different distributions, which reduces performance on real scenes due to sparse grasp labels and covariate shift. To solve existing problems, we propose a novel on-policy grasp detection method, which can train and test on the same distribution with dense pixel-level grasp labels generated on RGB-D images. A Parallel-Depth Grasp Generation (PDG-Generation) method is proposed to generate a parallel depth image through a new imaging model of projecting points in parallel; then this method generates multiple candidate grasps for each pixel and obtains robust grasps through flatness detection, force-closure metric and collision detection. Then, a large comprehensive Pixel-Level Grasp Pose Dataset (PLGP-Dataset) is constructed and released; distinguished with previous datasets with off-policy data and sparse grasp samples, this dataset is the first pixel-level grasp dataset, with the on-policy distribution where grasps are generated based on depth images. Lastly, we build and test a series of pixel-level grasp detection networks with a data augmentation process for imbalance training, which learn grasp poses in a decoupled manner on the input RGB-D images. Extensive experiments show that our on-policy grasp method can largely overcome the gap between simulation and reality, and achieves the state-of-the-art performance. Code and data are provided at https://github.com/liuchunsense/PLGP-Dataset.