论文标题
用于准地神经性湍流参数化的后验学习
A posteriori learning for quasi-geostrophic turbulence parametrization
论文作者
论文摘要
用于为气候模型构建子网格参数化的使用机器人学习正在受到越来越多的关注。最先进的策略将问题作为监督学习任务解决,并优化基于粗分辨率模型的信息来预测子网格通量的算法。在实践中,训练数据是由转换的高分辨率数值模拟产生的,以模仿粗分辨率模拟。从本质上讲,这些策略优化了子网格参数化,以满足所谓的$ \ textit {a先验} $标准。但是子网格参数化的实际目的是根据$ \ textit {a posteriori} $度量获得良好的性能,这意味着计算整个模型轨迹。在本文中,我们将重点放在能量反向散射的表示二维准地神性湍流中,并比较在固定计算复杂性下使用不同的学习策略获得的参数化。我们表明,基于$ \ textIt {a先验} $标准的策略产生参数化,这些参数倾向于在直接模拟中不稳定,并描述如何对端到端培训subgrid参数化,以满足$ \ textit {a postteriori} $标准。我们说明,端到端的学习策略会产生参数化,这些参数化在性能,稳定性和应用于不同流程配置的能力方面优于已知的经验和数据驱动方案。这些结果支持将来的可区分编程范式对于气候模型的相关性。
The use of machine learning to build subgrid parametrizations for climate models is receiving growing attention. State-of-the-art strategies address the problem as a supervised learning task and optimize algorithms that predict subgrid fluxes based on information from coarse resolution models. In practice, training data are generated from higher resolution numerical simulations transformed in order to mimic coarse resolution simulations. By essence, these strategies optimize subgrid parametrizations to meet so-called $\textit{a priori}$ criteria. But the actual purpose of a subgrid parametrization is to obtain good performance in terms of $\textit{a posteriori}$ metrics which imply computing entire model trajectories. In this paper, we focus on the representation of energy backscatter in two dimensional quasi-geostrophic turbulence and compare parametrizations obtained with different learning strategies at fixed computational complexity. We show that strategies based on $\textit{a priori}$ criteria yield parametrizations that tend to be unstable in direct simulations and describe how subgrid parametrizations can alternatively be trained end-to-end in order to meet $\textit{a posteriori}$ criteria. We illustrate that end-to-end learning strategies yield parametrizations that outperform known empirical and data-driven schemes in terms of performance, stability and ability to apply to different flow configurations. These results support the relevance of differentiable programming paradigms for climate models in the future.