论文标题
Hinnperf:用于可配置系统性能预测的分层互动神经网络
HINNPerf: Hierarchical Interaction Neural Network for Performance Prediction of Configurable Systems
论文作者
论文摘要
现代软件系统通常是高度配置的,通过各种配置选项为用户提供自定义功能。了解系统性能如何随不同选项组合而变化,这对于确定满足特定要求的最佳配置很重要。由于多个选项之间的复杂相互作用以及在巨大的配置空间下的高性能度量成本,因此研究不同配置如何影响系统性能是一项挑战。为了应对这些挑战,我们提出了Hinnperf,这是一种新型的分层互动神经网络,用于可配置系统的性能预测。 Hinnperf采用嵌入方法和层次网络块来建模配置选项之间的复杂相互作用,从而提高了该方法的预测准确性。此外,我们设计了一种层次正则化策略来增强模型鲁棒性。 10个现实世界可配置系统的经验结果表明,我们的方法从统计学上可以显着超过最先进的方法,通过达到平均预测准确性22.67%。此外,与集成梯度方法相结合,设计的层次结构提供了一些有关相互作用复杂性和配置选项的意义的见解,这可能会帮助用户和开发人员更好地了解可配置系统如何工作并有效地识别影响性能的重要选择。
Modern software systems are usually highly configurable, providing users with customized functionality through various configuration options. Understanding how system performance varies with different option combinations is important to determine optimal configurations that meet specific requirements. Due to the complex interactions among multiple options and the high cost of performance measurement under a huge configuration space, it is challenging to study how different configurations influence the system performance. To address these challenges, we propose HINNPerf, a novel hierarchical interaction neural network for performance prediction of configurable systems. HINNPerf employs the embedding method and hierarchic network blocks to model the complicated interplay between configuration options, which improves the prediction accuracy of the method. Besides, we devise a hierarchical regularization strategy to enhance the model robustness. Empirical results on 10 real-world configurable systems show that our method statistically significantly outperforms state-of-the-art approaches by achieving average 22.67% improvement in prediction accuracy. In addition, combined with the Integrated Gradients method, the designed hierarchical architecture provides some insights about the interaction complexity and the significance of configuration options, which might help users and developers better understand how the configurable system works and efficiently identify significant options affecting the performance.