论文标题
用二阶Sobolev指标对表面的弹性形状分析:一个全面的数值框架
Elastic shape analysis of surfaces with second-order Sobolev metrics: a comprehensive numerical framework
论文作者
论文摘要
本文介绍了一组数字方法,用于在不变(弹性)二阶Sobolev指标的设置中对3D表面进行Riemannian形状分析。更具体地说,我们解决了代表为3D网格的参数化或未参数浸入浸水表面之间的测量学和地球距离之间的计算。在此基础上,我们为表面集的统计形状分析开发了工具,包括用于估计Karcher均值并在形状群体上执行切线PCA的方法,以及用于沿着表面路径的平行传输。我们提出的方法从根本上依赖于通过使用Varifold Fidelity术语来为地球匹配问题提供轻松的变化表述,这使我们能够在计算无质量表面之间的地球分析时强制执行重复的独立性,同时允许我们与vare syspless syspless sysples sysples syples syples symess symess symess symess symess symess symess symess symess symess symess symess symess symess symess symess symess semess semess symess symess symess semess symess symess。重要的是,我们演示了如何扩展放松的变分框架以解决部分观察到的数据。在合成和真实的各种示例中,说明了我们的数值管道的不同好处。
This paper introduces a set of numerical methods for Riemannian shape analysis of 3D surfaces within the setting of invariant (elastic) second-order Sobolev metrics. More specifically, we address the computation of geodesics and geodesic distances between parametrized or unparametrized immersed surfaces represented as 3D meshes. Building on this, we develop tools for the statistical shape analysis of sets of surfaces, including methods for estimating Karcher means and performing tangent PCA on shape populations, and for computing parallel transport along paths of surfaces. Our proposed approach fundamentally relies on a relaxed variational formulation for the geodesic matching problem via the use of varifold fidelity terms, which enable us to enforce reparametrization independence when computing geodesics between unparametrized surfaces, while also yielding versatile algorithms that allow us to compare surfaces with varying sampling or mesh structures. Importantly, we demonstrate how our relaxed variational framework can be extended to tackle partially observed data. The different benefits of our numerical pipeline are illustrated over various examples, synthetic and real.