论文标题
不可避免的双色调模式的演变和均衡性的极端案例的演变
The evolution of unavoidable bi-chromatic patterns and extremal cases of balanceability
论文作者
论文摘要
我们研究了$ n $足够大的颜色模式,在$ 2 $ 2 $ - 颜色的边缘$ \ min \ {e(r),e(b)\} $,$ e(r)$(r)$和$ e(b)$是红色和蓝色的数字。更准确地说,我们确定这种不可避免的模式如何从颜色中不受限制地演变,即$ \ min \ {e(r),e(b)\} \ ge 0 $(由Ramsey's theorem给出)(由Ramsey's Theorem给出),即可能的最高限制,即$ | E(e(R) - E(R) - E(R) - E(R) - E(r)| \ le 1 $。我们还研究了每种颜色中某些子结构的效果。特别是,我们表明,在$ 2 $颜色中,每种颜色引起的图形都没有$ r $边缘的诱导匹配,但不可避免的图案的外观已经被授予了对$ \ min \ {e(e(r),e(b)\} $的限制较弱的限制。我们完成了图$ g $的平衡数字$ bal(n,g)的后果(即,至少$ k $的最低$ k $,使每$ 2 $ -EDGE $ k_n $ a $ k_n $带有$ \ min \ min \ min \ {e(r),e(b),e(b)\}> k $,每个$ g $ a $ g $ in $ g $ in $ n $ y y $ y y var in yr $ gens,in var in yr $ y y yr y;是$ bal(n,g)\ ge c n^{2- \ varepsilon} $的图形$ g $,这是可以实现的最高数量级,以及$ bal(n,g)\ le c(g)$,$ c(g)$的图形,其中$ c(g)$仅取决于$ g $ $ g $。我们描述了后者。
We study the color patterns that, for $n$ sufficiently large, are unavoidable in $2$-colorings of the edges of a complete graph $K_n$ with respect to $\min \{e(R), e(B)\}$, where $e(R)$ and $e(B)$ are the numbers of red and, respectively, blue edges. More precisely, we determine how such unavoidable patterns evolve from the case without restriction in the coloring, namely that $\min \{e(R), e(B)\} \ge 0$ (given by Ramsey's theorem), to the highest possible restriction, namely that $|e(R) - e(B)| \le 1$. We also investigate the effect of forbidding certain sub-structures in each color. In particular, we show that, in $2$-colorings whose graphs induced by each of the colors are both free from an induced matching on $r$ edges, the appearance of the unavoidable patterns is already granted with a much weaker restriction on $\min \{e(R), e(B)\}$. We finish analyzing the consequences of these results to the balancing number $bal(n,G)$ of a graph $G$ (i.e. the minimum $k$ such that every $2$-edge coloring of $K_n$ with $\min \{e(R), e(B)\} > k$ contains a copy of $G$ with half the edges in each color), and show that, for every $\varepsilon > 0$, there are graphs $G$ with $bal(n,G) \ge c n^{2-\varepsilon}$, which is the highest order of magnitude that is possible to achieve, as well as graphs where $bal(n,G) \le c(G)$, where $c(G)$ is a constant that depends only $G$. We characterize the latter ones.