论文标题
分子和rydberg原子的混合阵列中的量子计算
Quantum computation in a hybrid array of molecules and Rydberg atoms
论文作者
论文摘要
我们表明,与Rydberg Atoms相互作用的一系列极性分子是可扩展量子计算的有希望的混合系统。量子信息存储在分子的长期超精美或旋转状态中,这些态通过与rydberg原子的谐振偶极 - 偶极相互作用间接相互作用。基于此相互作用的两分门的持续时间为1 $ $ s,可实现的保真度为99.9%。门对颗粒的运动状态几乎没有敏感性 - 分子可以在热状态下,原子在rydberg兴奋期间不需要捕获原子,门不会加热分子,并且原子的加热具有可忽略的作用。在较大的静态阵列中,该栅极可以应用于由数十微米分离的任意分子对,从而使该方案高度可扩展。分子 - 原子相互作用也可用于快速Qubit初始化和有效的,无损的量子读数,而无需驱动任何分子过渡。单值位门是仅使用微波脉冲驱动的,从而利用了旋转状态之间强的电偶极转变。因此,可以在不移动分子或从地面电子状态中刺激它们的情况下进行大规模量子计算所需的所有操作。
We show that an array of polar molecules interacting with Rydberg atoms is a promising hybrid system for scalable quantum computation. Quantum information is stored in long-lived hyperfine or rotational states of molecules which interact indirectly through resonant dipole-dipole interactions with Rydberg atoms. A two-qubit gate based on this interaction has a duration of 1 $μ$s and an achievable fidelity of 99.9%. The gate has little sensitivity to the motional states of the particles -- the molecules can be in thermal states, the atoms do not need to be trapped during Rydberg excitation, the gate does not heat the molecules, and heating of the atoms has a negligible effect. Within a large, static array, the gate can be applied to arbitrary pairs of molecules separated by tens of micrometres, making the scheme highly scalable. The molecule-atom interaction can also be used for rapid qubit initialization and efficient, non-destructive qubit readout, without driving any molecular transitions. Single qubit gates are driven using microwave pulses alone, exploiting the strong electric dipole transitions between rotational states. Thus, all operations required for large scale quantum computation can be done without moving the molecules or exciting them out of their ground electronic states.