论文标题

合并临床试验和观察性随访数据集时的长期效应估计

Long-term effect estimation when combining clinical trial and observational follow-up datasets

论文作者

Cheng, Gang, Chen, Yen-Chi, Unger, Joseph M., Till, Cathee, Zhao, Ying-Qi

论文摘要

最近,结合实验和观察性随访数据集引起了很多关注。在活动时间的环境中,最近的工作使用了Medicare主张来延长前列腺癌临床试验的参与者的随访期。这允许估计仅临床试验数据无法估计的长期效应。在本文中,我们研究了临床试验的参与者与具有不完整数据的观察性随访数据集有关的长期效果的估计。由于各种原因,此类数据链接通常是不完整的。我们将不完整的链接作为缺失的数据问题,并仔细考虑了链接状态与丢失的数据机制之间的关系。我们使用流行的COX比例危害模型作为工作模型来定义长期效果。我们提出了一个有条件的链接(CLAR)假设和连杆权重(IPLW)部分似然估计量的逆概率。我们表明,我们的IPLW部分可能性估计量是一致的,并且渐近地正常。我们进一步扩展了合并时间依赖性协变量的方法。仿真结果证实了我们方法的有效性,我们将方法进一步应用于SWOG研究。

Combining experimental and observational follow-up datasets has received a lot of attention lately. In a time-to-event setting, recent work has used medicare claims to extend the follow-up period for participants in a prostate cancer clinical trial. This allows the estimation of the long-term effect that cannot be estimated by clinical trial data alone. In this paper, we study the estimation of long-term effect when participants in a clinical trial are linked to an observational follow-up dataset with incomplete data. Such data linkages are often incomplete for various reasons. We formulate incomplete linkages as a missing data problem with careful considerations of the relationship between the linkage status and the missing data mechanism. We use the popular Cox proportional hazard model as a working model to define the long-term effect. We propose a conditional linking at random (CLAR) assumption and an inverse probability of linkage weighting (IPLW) partial likelihood estimator. We show that our IPLW partial likelihood estimator is consistent and asymptotically normal. We further extend our approach to incorporate time-dependent covariates. Simulations results confirm the validity of our method, and we further apply our methods to the SWOG study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源