论文标题
$ \ {k_2,c_n \} $的紧密韧性,孤立的韧性和绑定的数字界限
Tight toughness, isolated toughness and binding number bounds for the $\{K_2,C_n\}$-factors
论文作者
论文摘要
$ \ {k_2,c_n \} $ - 图的因子是一个子图,每个组件的每个组件都是$ k_2 $或$ c_n $。在本文中,关于紧绷的韧性,孤立的韧性和绑定数量的足够条件,以确保存在$ \ {k_2,c_ {2i+1} | i \ geq 2 \} $ - 获得任何图的因子,这是由于Gao和Wang引起的问题(J.Oper。Soc。Soc。Chine(2021),https://doi.org/10.1007/s40305--021-021-021-00357-6)。
The $\{K_2,C_n\}$-factor of a graph is a spanning subgraph whose each component is either $K_2$ or $C_n$. In this paper, a sufficient condition with regard to tight toughness, isolated toughness and binding number bounds to guarantee the existence of the $\{K_2,C_{2i+1}| i\geq 2 \}$-factor for any graph is obtained, which answers a problem due to Gao and Wang (J. Oper. Res. Soc. China (2021), https://doi.org/10.1007/s40305-021-00357-6).