论文标题
近赤道冠状孔的热和磁场结构
Thermal and magnetic field structure of near equatorial coronal holes
论文作者
论文摘要
我们使用全盘,SOHO/EIT 195 $Å$校准的图像来测量面积的纬度和日常变化以及近赤道冠状孔的平均光子通量。另外,估计由冠状孔发出的能量和磁场结构的强度。通过分析2001 - 2008年的数据,我们发现冠状孔的平均面积(a),光子通量(F),辐射能(E)和温度(T)的变化与纬度无关。而冠状孔的磁场结构的强度取决于纬度,并且从赤道附近的低点到两个杆子附近的高。估计物理参数的典型平均值为:$ a \ sim 3.8(\ pm0.5)\ times10^{20} 〜cm^{2},f \ sim 2.3(\ pm0.2)\ pm0.2)\ times10^{13} {13}〜 10^{3} 〜ERGSCM^{ - 2} sec^{ - 1} \ and \ t \ T \ sim 0.94(\ pm0.1)\ times10^{6}〜$K。Corona冠状孔磁场结构的平均强度为$ \ sim $ \ sim $ \ sim $ $ 0.08 \ pm pm pm 0.02 $ 0.02 $ 0.02 $ 0.02 $ 0.02 $ 0.02 $ 0.02。如果冠状孔锚定在对流区域中,人们会期望它们应差异化。因此,带有太阳等离子体的冠状孔的热风平衡和异位化意味着赤道与两极之间的温度差。与这一事实相反,近赤道冠状孔的热结构的变化与纬度无关,得出的结论是,冠状孔必须刚性地旋转,而冠状孔最初可能固定在最初的转速下,证实了我们先前的研究(APJ,763,137,2013,2013)。
We use full-disk, SOHO/EIT 195 $Å$ calibrated images to measure latitudinal and day to day variations of area and average photon fluxes of the near equatorial coronal holes. In addition, energy emitted by the coronal holes with their temperature and strength of magnetic field structures are estimated. By analyzing data of 2001-2008, we find that variations of average area (A), photon flux (F), radiative energy (E) and temperature (T) of coronal holes are independent of latitude. Whereas inferred strength of magnetic field structure of the coronal holes is dependent on the latitudes and varies from low near the equator to high near both the poles. Typical average values of estimated physical parameters are: $A \sim 3.8(\pm0.5)\times10^{20}~cm^{2}, F \sim 2.3(\pm0.2)\times10^{13}~photons\;cm^{-2}\;sec^{-1}, E \sim 2.32(\pm0.5)\times 10^{3}~ergscm^{-2}sec^{-1} \ and \ T \sim 0.94(\pm0.1)\times10^{6} ~$ K. Average strength of magnetic field structure of coronal hole at the corona is estimated to be $\sim$ $0.08 \pm 0.02$ Gauss. If coronal holes are anchored in the convection zone, one would expect they should rotate differentially. Hence, thermal wind balance and isorotation of coronal holes with the solar plasma implies the temperature difference between the equator and both the poles. Contrary to this fact, variation of thermal structure of near equatorial coronal holes is independent of latitude leading to a conclusion that coronal holes must rotate rigidly that are likely to be anchored initially below the tachocline confirming our previous study (ApJ, 763, 137, 2013).