论文标题

插入材料的晶体学设计

Crystallographic design of intercalation materials

论文作者

Balakrishna, Ananya Renuka

论文摘要

插入材料是可逆储能的有前途的候选者,例如,用作锂电池电极,氢存储化合物和电染料材料。阻止这些材料更广泛使用的一个重要问题是,它们在插入过程中会经历结构转换(高达〜10%的晶格菌株),从而扩大了材料,成核微裂纹,并最终导致材料故障。除了晶格的结构转换外,互相材料的晶体学纹理在管理离子传输特性,生成相分离微结构以及与晶体缺陷的弹性相互作用中起着关键作用。在这篇综述中,我概述了晶格,相变微观结构和晶体学缺陷的结构转换如何影响互嵌材料的化学机械特性。在每个部分中,我都会确定晶体设计插入化合物的关键挑战和机会,以改善其特性和寿命。我主要引用了可充电电池中使用的互嵌型阴极文献中的例子,但是,确定的挑战和机会可将其转移到更广泛的插入化合物中。

Intercalation materials are promising candidates for reversible energy storage and are, for example, used as lithium-battery electrodes, hydrogen-storage compounds, and electrochromic materials. An important issue preventing the more widespread use of these materials is that they undergo structural transformations (of up to ~10% lattice strains) during intercalation, which expand the material, nucleate microcracks, and, ultimately, lead to material failure. Besides the structural transformation of lattices, the crystallographic texture of the intercalation material plays a key role in governing ion-transport properties, generating phase separation microstructures, and elastically interacting with crystal defects. In this review, I provide an overview of how the structural transformation of lattices, phase transformation microstructures, and crystallographic defects affect the chemo-mechanical properties of intercalation materials. In each section, I identify the key challenges and opportunities to crystallographically design intercalation compounds to improve their properties and lifespans. I predominantly cite examples from the literature of intercalation cathodes used in rechargeable batteries, however, the identified challenges and opportunities are transferable to a broader range of intercalation compounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源