论文标题
在离子交换膜上浓度极化期间电射感染现象的直接3D观察和揭开
Direct 3D observation and unraveling of electroconvection phenomena during concentration polarization at ion-exchange membranes
论文作者
论文摘要
十年前,二维显微流动可视化证明了电射感染作用的理论上预测存在,以及它们在破坏离子选择性流体/膜界面处浓度极化层的决定性作用。电染色会诱导混沌流量涡流,将体积浓度大量浓度注射到界面处的离子耗尽扩散层中。到目前为止,仅在2D中进行了这些重要流动模式的实验定量。数值直接模拟建议3D功能,但缺乏实验证明。 3D模拟在覆盖扩展的宽敞尺度方面也受到限制。 这项研究提出了一种新的综合实验方法,用于在阳离子交换膜附近的3D电向速度场的时间分辨记录。第一次,可以在超限制电流密度的倍数下在3D中可视化时空速度场。与当今的模拟相反,这些实验涵盖了实际的电苷膜过程的典型长度和时间尺度。 我们可视化相干的涡旋结构,并揭示了速度场及其统计数据的变化,在从涡旋卷到涡旋环的过渡过程中,电流密度的增加。过渡的特征是旋转方向,均方根速度和颞能谱的变化,对空间光谱的影响很小。这些发现表明,与空间光谱相比,EC的结构变化对均方根速度和时间光谱的影响更大。这些知识是工程离子选择表面的先决条件,它将能够在扩散限制的Nernst制度之外的电动驱动过程运行。
A decade ago, two-dimensional microscopic flow visualization proved the theoretically predicted existence of electroconvection roles as well as their decisive role in destabilizing the concentration polarization layer at ion-selective fluid/membrane interfaces. Electroconvection induces chaotic flow vortices injecting volume having bulk concentration into the ion-depleted diffusion layer at the interface. Experimental quantification of these important flow patterns have so far only been carried out in 2D. Numerical direct simulations suggest 3D features, yet experimental proof is lacking. 3D simulations are also limited in covering extended spacial and temporal scales. This study presents a new comprehensive experimental method for the time-resolved recording of the 3D electroconvective velocity field near a cation-exchange membrane. For the first time, the spatio-temporal velocity field can be visualized in 3D at multiples of the overlimiting current density. In contrast to today's simulations, these experiments cover length and time scales typical for actual electrodialytic membrane processes. We visualize coherent vortex structures and reveal the changes in the velocity field and its statistics during the transition from vortex rolls to vortex rings with increasing current density. The transition is characterized by changes in the rotational direction, mean square velocity, and temporal energy spectrum with only little influence on the spatial spectrum. These findings indicate a more significant impact of EC's structural change on the mean square velocities and temporal spectra than on the spatial spectra. This knowledge is a prerequisite for engineering ion-selective surfaces that will enable the operation of electrically driven processes beyond the diffusion-limited Nernst regime.