论文标题
布尔立方体上变异量子机学习的表达性
Expressivity of Variational Quantum Machine Learning on the Boolean Cube
论文作者
论文摘要
分类数据在机器学习研究中起着重要的作用,并且出现在各种应用中。可以在布尔立方体上表达大量实用值的功能的模型对于涉及离散值数据类型的问题(包括不是布尔值的)有用。到目前为止,将经典数据嵌入到各种量子机器学习模型中的常用方案编码连续值。在这里,我们研究了将布尔值数据编码为用于机器学习任务的参数化量子电路中的量子嵌入。我们使用两个量子嵌入:相对于先前已知的结果,缩小了$ n $维布尔立方体功能的可表示性条件:相位嵌入:基于量子随机访问代码的相位嵌入和嵌入。我们表明,对于$ n $维的布尔维亚数据集中的任何实值功能,存在基于使用$ n $ Qubits的相位嵌入的各种线性量子模型,这些模型可以代表它,并使用$ d <n $ Qubits组成$ d <n $ Qubits,该模型最多可以表达任何功能,最多可以表达任何$ d $ d $。 Additionally, we prove that variational linear quantum models that use the quantum random access code embedding can express functions on the Boolean cube with degree $ d\leq \lceil\frac{n}{3}\rceil$ using $\lceil\frac{n}{3}\rceil$ qubits, and that an ensemble of such models can represent any function on the Boolean $ d \ leq \ lceil \ frac {n} {3} \ rceil $的立方体。此外,我们讨论了每个嵌入的潜在好处以及连续重复的影响。最后,我们证明了通过使用Qiskit机器学习框架对IBM量子处理器上的数值模拟和实验进行的嵌入的使用。
Categorical data plays an important part in machine learning research and appears in a variety of applications. Models that can express large classes of real-valued functions on the Boolean cube are useful for problems involving discrete-valued data types, including those which are not Boolean. To this date, the commonly used schemes for embedding classical data into variational quantum machine learning models encode continuous values. Here we investigate quantum embeddings for encoding Boolean-valued data into parameterized quantum circuits used for machine learning tasks. We narrow down representability conditions for functions on the $n$-dimensional Boolean cube with respect to previously known results, using two quantum embeddings: a phase embedding and an embedding based on quantum random access codes. We show that for any real-valued function on the $n$-dimensional Boolean cube, there exists a variational linear quantum model based on a phase embedding using $n$ qubits that can represent it and an ensemble of such models using $d < n$ qubits that can express any function with degree at most $d$. Additionally, we prove that variational linear quantum models that use the quantum random access code embedding can express functions on the Boolean cube with degree $ d\leq \lceil\frac{n}{3}\rceil$ using $\lceil\frac{n}{3}\rceil$ qubits, and that an ensemble of such models can represent any function on the Boolean cube with degree $ d\leq \lceil\frac{n}{3}\rceil$. Furthermore, we discuss the potential benefits of each embedding and the impact of serial repetitions. Lastly, we demonstrate the use of the embeddings presented by performing numerical simulations and experiments on IBM quantum processors using the Qiskit machine learning framework.