论文标题
磁流体动力波动在1 au处的亚alfvénic太阳湍流中的磁流体动力波动的性能分析
Multi-spacecraft Analysis of the Properties of Magnetohydrodynamic Fluctuations in Sub-Alfvénic Solar Wind Turbulence at 1 AU
论文作者
论文摘要
我们在波形空间中提出了三维磁力谱,以研究使用磁层多尺度航天器在磁性水力动力学(MHD)刻度下的各向异性和尺度上的尺度。磁功率分布是在由波形(k)和背景磁场($ b_0 $)确定的新坐标中组织的。这项研究利用两种方法来确定波形:奇异值分解方法和时间分析。两种方法的组合允许在没有任何时空假设的模式组合物中检查磁场特性。观察结果表明,波动($ΔB_ {\ perp1} $)沿垂直于k的方向,而$ b_0 $明显地垂直于$ b_0 $,而这种各向异性随aveNumber而增加。 $ΔB_ {\ perp1} $的降低功率光谱关注Goldreich-Sridhar量表:$ p(k_ \ perp)\ sim k_ \ perp^{ - 5/3} $和$ p(k__ {|| {|| {|| {|| {|| {|| {|||相比之下,$ kb_0 $平面显示各向同性行为的波动:垂直功率分布与并行分布大致相同。 $ kb_0 $平面内波动的功率谱降低,遵循量表:$ p(k_ \ perp)\ sim k_ \ perp^{ - 3/2} $和$ p(k_ {||| {|| {|| {|| {|| sim k_ k_ k_ k_}比较频率波形光谱与MHD模式的理论分散关系,我们发现$ΔB_ {\ perp1} $可能与Alfven模式相关联。此外,对于Alfvénic成分,发现级联时间与波周期的比率是少数因素,这与强湍流状态下的临界平衡一致。 $ kb_0 $平面内的磁场波动的可能性更大,其可能来自基于各向同性行为的快速模式。
We present three-dimensional magnetic power spectra in wavevector space to investigate anisotropy and scalings of sub-Alfvénic solar wind turbulence at magnetohydrodynamic (MHD) scale using the Magnetospheric Multiscale spacecraft. The magnetic power distributions are organized in a new coordinate determined by wavevectors (k) and background magnetic field ($b_0$) in Fourier space. This study utilizes two approaches to determine wavevectors: singular value decomposition method and timing analysis. The combination of the two methods allows an examination of magnetic field properties in terms of mode compositions without any spatiotemporal hypothesis. Observations show that fluctuations ($δB_{\perp1}$) in the direction perpendicular to k and $b_0$ prominently cascade perpendicular to $b_0$, and such anisotropy increases with wavenumber. The reduced power spectra of $δB_{\perp1}$ follow Goldreich-Sridhar scalings: $P(k_\perp)\sim k_\perp^{-5/3}$ and $P(k_{||}) \sim k_{||}^{-2}$. In contrast, fluctuations within $kb_0$ plane show isotropic behaviors: perpendicular power distributions are approximately the same as parallel distributions. The reduced power spectra of fluctuations within $kb_0$ plane follow the scalings: $P(k_\perp)\sim k_\perp^{-3/2}$ and $P(k_{||})\sim k_{||}^{-3/2}$. Comparing frequency-wavevector spectra with theoretical dispersion relations of MHD modes, we find that $δB_{\perp1}$ are probably associated with Alfven modes. Moreover, for the Alfvénic component, the ratio of cascading time to the wave period is found to be a factor of a few, consistent with critical balance in the strong turbulence regime. The magnetic field fluctuations within $kb_0$ plane more likely originate from fast modes based on isotropic behaviors.