论文标题

结合箭量代数的Frobenius-Perron理论包含循环

Frobenius-Perron theory of the bound quiver algebras containing loops

论文作者

Chen, J. M., Chen, J. Y.

论文摘要

基质的光谱半径,也称为Frobenius-Perron维度,是研究线性代数的有用工具,在代数的表示类别的分类中起着重要作用。在本文中,我们研究了包含循环的结合箭量代数的表示类别的Frobenius-Perron理论,找到了一种计算这些代数的Frobenius-Perron维度的方法,当它们满足环路的通勤条件。作为一个应用程序,我们证明了修改后的ADE ADE有限箭量代数的表示类别的Frobenius-Perron维度等于顶点处的最大环数。最后,我们指出的是,存在的frobenius-perron维度也等于通过举例说明的最大环数。

The spectral radius of matrix, also known as Frobenius-Perron dimension, is a useful tool for studying linear algebras and plays an important role in the classification of the representation categories of algebras. In this paper, we study the Frobenius-Perron theory of the representation categories of bound quiver algebras containing loops, find a way to calculate the Frobenius-Perron dimension of these algebras when they satisfy the commutativity condition of loops. As an application, we prove that the Frobenius-Perron dimension of the representation category of a modified ADE bounded quiver algebra is equal to the maximum number of loops at a vertex. Finally, we point out that there also exists infinite dimensional algebras whose Frobenius-Perron dimension is equal to the maximal number of loops by giving an example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源