论文标题
部分可观测时空混沌系统的无模型预测
Constructing constant curvature metrics on Riemann surfaces with singularities
论文作者
论文摘要
通过通过某种Meromoromormormormormormormormormormormormormormormormormormormor的构造,我们将在带有奇异性的Riemann表面上明确构造一种恒定曲率的共形指标。作为一个应用程序,我们将使用两个圆锥形奇点对$ s^{2} $上的常数曲率进行分类,Troyanov首先使用投影连接在\ cite {tr89}中证明了这一点。
By constructing an ODE through a kind of meromorphic 1-forms, we will give an explicit construction of a kind of conformal metrics of constant curvature on Riemann surfaces with singularities. As an application, we will classify constant curvature one metrics on $S^{2}$ with two conical singularities, which was first proved by Troyanov in \cite{Tr89} by using projective connection.