论文标题
核心通过细丝碎片和环境压力对其的影响
Core formation via filament fragmentation and the impact of ambient pressure on it
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Prestellar cores are generally spheroidal, some of which appear oblate while others appear prolate. Very few of them appear circular in projection. Little, however, is understood about the processes or the physical conditions under which prolate/oblate cores form. We find that an initially sub-critical filament experiencing relatively low pressure ($\lesssim 10^{4}$ K cm$^{-3}$) forms prolate cores (i.e., those with axial ratios in excess of unity) via gradual accumulation of gas in density crests. Meanwhile, a filament that is initially transcritical and experiences pressure similar to that in the Solar neighbourhood (between $\mathrm{few}\ \times 10^{4}$ K cm$^{-3}$ - $\mathrm{few}\ \times 10^{5}$ K cm$^{-3}$) forms oblate cores (i.e., those with axial ratios less than unity) via \emph{Jeans like} fragmentation. At higher pressure, however, fragments within the filament do not tend to survive as they rebound soon after formation. We also argue that quasi-oscillatory features of velocity gradient observed along the filament axis, and in the direction orthogonal to the axis, are integral to the filament evolution process and arise due to the growth of corrugations on its surface. The axial component of the velocity gradient, in particular, traces the gas-flow along the filament length. We therefore posit that it could be used to constrain the filament-formation mechanism. The magnitude of the respective components of velocity gradients increases with increasing external pressure.