论文标题
学会在知识对话中表达
Learning to Express in Knowledge-Grounded Conversation
论文作者
论文摘要
通过额外的知识进行对话的生成已经显示出巨大的潜力,可以建立一个能够通过知识渊博和引人入胜的反应来回复的系统。现有研究的重点是如何用适当的知识综合响应,但忽略了说话者即使在相同的背景下也可以以不同的方式表达相同的知识。在这项工作中,我们主要考虑知识表达的两个方面,即每个部分中内容的响应和样式的结构。因此,我们介绍了两个顺序的潜在变量,以分别表示结构和内容样式。我们提出了一个基于分割的生成模型,并通过一种变异方法来优化模型,以发现响应中知识表达的潜在模式。两个基准的评估结果表明,我们的模型可以学习由一些示例定义的结构样式,并以所需的内容样式生成响应。
Grounding dialogue generation by extra knowledge has shown great potentials towards building a system capable of replying with knowledgeable and engaging responses. Existing studies focus on how to synthesize a response with proper knowledge, yet neglect that the same knowledge could be expressed differently by speakers even under the same context. In this work, we mainly consider two aspects of knowledge expression, namely the structure of the response and style of the content in each part. We therefore introduce two sequential latent variables to represent the structure and the content style respectively. We propose a segmentation-based generation model and optimize the model by a variational approach to discover the underlying pattern of knowledge expression in a response. Evaluation results on two benchmarks indicate that our model can learn the structure style defined by a few examples and generate responses in desired content style.