论文标题
Lipschitz地图的扩展在Hensel最小结构中可定义
Extension of Lipschitz maps definable in Hensel minimal structures
论文作者
论文摘要
在本文中,我们建立了一个关于在Hensel最小的,非平整价值的领域$ k $均质零的lipchitz地图扩展的定理。它可以被认为是Kirszbraun定理的可定义的,非固定的,非局部紧凑的版本。
In this paper, we establish a theorem on extension of Lipschitz maps definable in Hensel minimal, non-trivially valued fields $K$ of equicharacteristic zero. It may be regarded as a definable, non-Archimedean, non-locally compact version of Kirszbraun's theorem.