论文标题

忠实的用户会享受更好的建议吗?从时间角度了解推荐的准确性

Do Loyal Users Enjoy Better Recommendations? Understanding Recommender Accuracy from a Time Perspective

论文作者

Ji, Yitong, Sun, Aixin, Zhang, Jie, Li, Chenliang

论文摘要

在学术研究中,通常在基准数据集上评估推荐系统,而无需考虑全球时间表。因此,我们无法回答诸如:忠实用户比非忠于使用者更好的建议?忠诚度可以由用户在推荐系统中活动的时间段或用户所拥有的历史交互的数量来定义。在本文中,我们对全球时间表的建议结果进行了全面分析。我们在四个基准数据集上使用五个广泛使用的模型,即BPR,Neumf,LightGCN,Sasrec和Tisasrec进行实验,即Movielens-25m,Yelp,Yelp,Amazon-Music和Amazon-Electronic。我们的实验结果对上述问题给出了答案。许多历史互动的用户都受到相对较差的建议。待在系统较短时间段的用户享受更好的建议。这两个发现都是违反直觉的。有趣的是,最近与系统互动的用户在测试实例的时间点方面享受了更好的建议。不管用户的忠诚度如何,重新度的发现适用于所有用户。我们的研究提供了不同的观点来了解建议的准确性,我们的发现可能会触发推荐模型设计的重新访问。该代码可在\ url {https://github.com/putatu/recommenderloyalty中获得。

In academic research, recommender systems are often evaluated on benchmark datasets, without much consideration about the global timeline. Hence, we are unable to answer questions like: Do loyal users enjoy better recommendations than non-loyal users? Loyalty can be defined by the time period a user has been active in a recommender system, or by the number of historical interactions a user has. In this paper, we offer a comprehensive analysis of recommendation results along global timeline. We conduct experiments with five widely used models, i.e., BPR, NeuMF, LightGCN, SASRec and TiSASRec, on four benchmark datasets, i.e., MovieLens-25M, Yelp, Amazon-music, and Amazon-electronic. Our experiment results give an answer "No" to the above question. Users with many historical interactions suffer from relatively poorer recommendations. Users who stay with the system for a shorter time period enjoy better recommendations. Both findings are counter-intuitive. Interestingly, users who have recently interacted with the system, with respect to the time point of the test instance, enjoy better recommendations. The finding on recency applies to all users, regardless of users' loyalty. Our study offers a different perspective to understand recommender accuracy, and our findings could trigger a revisit of recommender model design. The code is available in \url{https://github.com/putatu/recommenderLoyalty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源