论文标题

室温超导性:理论和材料设计的作用

Room Temperature Superconductivity: the Roles of Theory and Materials Design

论文作者

Pickett, Warren E.

论文摘要

在发现超导率的半个世纪以来,对更好的超导体进行材料探索而在不了解潜在机制的情况下进行。 1957年BCS理论清除了:超导状态是由于电子在费米表面上的配对而发生的。在接下来的半个世纪中,临界温度较高,仅随着新材料的合成,才偶然地实现了$ _C $。同时,在材料依赖性水平上的声子耦合超导性的形式理论变得高度发达:鉴于已知的化合物,其t $ _c $的值,超导间隙函数以及超导状态的其他几个属性,独立于进一步的实验输入。最近,基于密度功能理论的计算材料设计已发展到预测水平 - 可以根据各种数值算法预测新材料。综上所述,这些功能可以实现新超导体的理论预测。在这里,通过数值预测,导致三个新的最高温度超导体的过程在实验上得到了确认 - $ _3 $,lah $ _ {10} $和yh $ _9 $ - 已叙述。这些Hydrides在Megabar压力下的200-280K范围内具有T $ _C $,在这里,该开发项目将被记录下来。讨论了当前的活动和挑战,以及可以指导进一步探索的压缩氢化物中的规律性。

For half a century after the discovery of superconductivity, materials exploration for better superconductors proceeded without knowledge of the underlying mechanism. The 1957 BCS theory cleared that up: the superconducting state occurs due to pairing of electrons over the Fermi surface. Over the following half century higher critical temperature T$_c$ was achieved only serendipitously as new materials were synthesized. Meanwhile the formal theory of phonon-coupled superconductivity at the material-dependent level became highly developed: given a known compound, its value of T$_c$, the superconducting gap function, and several other properties of the superconducting state became available independent of further experimental input. More recently, density functional theory based computational materials design has progressed to a predictive level -- new materials can be predicted on the basis of various numerical algorithms. Taken together, these capabilities enable theoretical prediction of new superconductors. Here the process that resulted in three new highest temperature superconductors, predicted numerically, confirmed experimentally -- SH$_3$, LaH$_{10}$, and YH$_9$ -- is recounted. These hydrides have T$_c$ in the 200-280K range at megabar pressures, and here the development will be chronicled. Current activities and challenges are discussed, together with Regularities in compressed hydrides that can guide further exploration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源