论文标题
理查森品种的转折
The twist for Richardson varieties
论文作者
论文摘要
我们构建了一个复杂的半神经代数群的旗帜种类中开放的理查森品种的扭曲自动形态。我们表明,Twist地图保留了完全积极的部分,并证明了Ansatz室的公式。我们的Twist图概括了Berenstein-Fomin-Zelevinsky,Marsh-Scott和Muller-Speyer先前构建的扭曲地图。我们用它来解释Leclerc和Ingermanson研究的Richardson品种的两个猜想集群结构之间的关系。
We construct the twist automorphism of open Richardson varieties inside the flag variety of a complex semisimple algebraic group. We show that the twist map preserves totally positive parts, and prove a Chamber Ansatz formula for it. Our twist map generalizes the twist maps previously constructed by Berenstein-Fomin-Zelevinsky, Marsh-Scott, and Muller-Speyer. We use it to explain the relationship between the two conjectural cluster structures for Richardson varieties studied by Leclerc and by Ingermanson.