论文标题
部分可观测时空混沌系统的无模型预测
The Radcliffe Wave as the gas spine of the Orion Arm
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The Radcliffe Wave is a $\sim3$ kpc long coherent gas structure containing most of the star-forming complexes near the Sun. In this Letter we aim to find a Galactic context for the Radcliffe Wave by looking into a possible relationship between the gas structure and the Orion (Local) Arm. We use catalogs of massive stars and young open clusters based on \textit{Gaia} EDR3 astrometry, in conjunction with kiloparsec-scale 3D dust maps, to investigate the Galactic \textit{XY} spatial distributions of gas and young stars. We find a quasi-parallel offset between the luminous blue stars and the Radcliffe Wave, in that massive stars and clusters are found essentially inside and downstream from the Radcliffe Wave. We examine this offset in the context of color gradients observed in the spiral arms of external galaxies, where the interplay between density wave theory, spiral shocks, and triggered star formation has been used to interpret this particular arrangement of gas/dust and OB stars, and outline other potential explanations as well. We hypothesize that the Radcliffe Wave constitutes the gas reservoir of the Orion (Local) Arm, and presents itself as a prime laboratory to study the interface between Galactic structure, the formation of molecular clouds in the Milky Way, and star formation.