论文标题

Pauli稳定器代码的同源不变

Homological invariants of Pauli stabilizer codes

论文作者

Ruba, Blazej, Yang, Bowen

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We study translationally invariant Pauli stabilizer codes with qudits of arbitrary, not necessarily uniform, dimensions. Using homological methods, we define a series of invariants called charge modules. We describe their properties and physical meaning. The most complete results are obtained for codes whose charge modules have Krull dimension zero. This condition is interpreted as mobility of excitations. We show that it is always satisfied for translation invariant 2D codes with unique ground state in infinite volume, which was previously known only in the case of uniform, prime qudit dimension. For codes all of whose excitations are mobile we construct a $p$-dimensional excitation and a $(D-p-1)$-form symmetry for every element of the $p$-th charge module. Moreover, we define a braiding pairing between charge modules in complementary degrees. We discuss examples which illustrate how charge modules and braiding can be computed in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源