论文标题

使用机器学习替代模型对空间可变随机字段的坡度稳定性预测

Slope stability predictions on spatially variable random fields using machine learning surrogate models

论文作者

Aminpour, Mohammad, Alaie, Reza, Kardani, Navid, Moridpour, Sara, Nazem, Majidreza

论文摘要

随机场蒙特卡洛(MC)可靠性分析是确定失败概率的强大随机方法。但是,此方法需要大量的数值模拟,要求高计算成本。本文探讨了用作有限数量的随机场坡度稳定性模拟训练的替代模型的不同机器学习(ML)算法的效率,以预测大型数据集的结果。本文中的MC数据仅需要检查故障或非失败,从而规避了安全因素的耗时计算。生成了广泛的数据集,包括120,000个有限差的MC斜率稳定性模拟,其中包含不同水平的土壤异质性和各向异性。在9种不同的模型和合奏分类器中,发现行李合奏,随机森林和支持向量分类器是该问题的出色模型。 ML模型仅对0.47%的数据(500个样本)进行了培训,可以将整个120,000个样本分类为85%,而AUC得分为%91。 ML方法在分类随机场坡度稳定性结果中的性能通常会以较高的各向异性和土壤异质性降低。 ML辅助MC可靠性分析证明了一种强大的随机方法,在这种方法中,使用MC数据的%5的预测概率中的错误平均仅为%0.46。该方法将计算时间从306天减少到不到6小时。

Random field Monte Carlo (MC) reliability analysis is a robust stochastic method to determine the probability of failure. This method, however, requires a large number of numerical simulations demanding high computational costs. This paper explores the efficiency of different machine learning (ML) algorithms used as surrogate models trained on a limited number of random field slope stability simulations in predicting the results of large datasets. The MC data in this paper require only the examination of failure or non-failure, circumventing the time-consuming calculation of factors of safety. An extensive dataset is generated, consisting of 120,000 finite difference MC slope stability simulations incorporating different levels of soil heterogeneity and anisotropy. The Bagging Ensemble, Random Forest and Support Vector classifiers are found to be the superior models for this problem amongst 9 different models and ensemble classifiers. Trained only on 0.47% of data (500 samples), the ML model can classify the entire 120,000 samples with an accuracy of %85 and AUC score of %91. The performance of ML methods in classifying the random field slope stability results generally reduces with higher anisotropy and heterogeneity of soil. The ML assisted MC reliability analysis proves a robust stochastic method where errors in the predicted probability of failure using %5 of MC data is only %0.46 in average. The approach reduced the computational time from 306 days to less than 6 hours.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源