论文标题

部分可观测时空混沌系统的无模型预测

AdaTest:Reinforcement Learning and Adaptive Sampling for On-chip Hardware Trojan Detection

论文作者

Chen, Huili, Zhang, Xinqiao, Huang, Ke, Koushanfar, Farinaz

论文摘要

本文提出了Adatest,这是一种新型的自适应测试模式生成框架,可为高效且可靠的硬件Trojan(HT)检测。 HT是一场后门攻击,它通过受害者集成电路(ICS)的设计设计。 Adatest从噪声和变化存在下检测较小的木马的可伸缩性和准确性方面提高了现有的HT检测技术。为了获得高扳机覆盖范围,Adatest利用加固学习(RL)产生了多种测试输入。特别是,我们以迭代方式逐步生成具有高奖励值的测试向量。在每次迭代中,测试集将根据需要评估和自适应扩展。此外,Adatest集成了自适应抽样,以优先考虑为HT检测提供更多信息的测试样品,从而减少样品数量,同时改善样品质量以进行更快的探索。我们使用软件/硬件共同设计原理开发Adatest,并提供优化的片体体系结构解决方案。 Adatest的体系结构以两种方式最大程度地减少了硬件开销:(i)在可编程硬件上部署电路仿真,以加速测试输入的奖励评估; (ii)通过自动构造辅助电路以进行测试输入,奖励评估和​​自适应采样,将每个计算阶段输送。我们评估了Adatest在各种HT基准测试上的性能,并将其与使用逻辑测试进行HT检测的两项先前的作品进行了比较。实验结果表明,与先前的工作相比,ADATEST最多可产生两种测试生成速度和两个测试集尺寸的降低,同时达到相同或更高的特洛伊木马检测率。

This paper proposes AdaTest, a novel adaptive test pattern generation framework for efficient and reliable Hardware Trojan (HT) detection. HT is a backdoor attack that tampers with the design of victim integrated circuits (ICs). AdaTest improves the existing HT detection techniques in terms of scalability and accuracy of detecting smaller Trojans in the presence of noise and variations. To achieve high trigger coverage, AdaTest leverages Reinforcement Learning (RL) to produce a diverse set of test inputs. Particularly, we progressively generate test vectors with high reward values in an iterative manner. In each iteration, the test set is evaluated and adaptively expanded as needed. Furthermore, AdaTest integrates adaptive sampling to prioritize test samples that provide more information for HT detection, thus reducing the number of samples while improving the sample quality for faster exploration. We develop AdaTest with a Software/Hardware co-design principle and provide an optimized on-chip architecture solution. AdaTest's architecture minimizes the hardware overhead in two ways:(i) Deploying circuit emulation on programmable hardware to accelerate reward evaluation of the test input; (ii) Pipelining each computation stage in AdaTest by automatically constructing auxiliary circuit for test input generation, reward evaluation, and adaptive sampling. We evaluate AdaTest's performance on various HT benchmarks and compare it with two prior works that use logic testing for HT detection. Experimental results show that AdaTest engenders up to two orders of test generation speedup and two orders of test set size reduction compared to the prior works while achieving the same level or higher Trojan detection rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源