论文标题

选择核规范类型最小化问题的正则化参数

Selecting Regularization Parameters for nuclear norm type minimization problems

论文作者

Li, Kexin, Li, Hongwei, Chan, Raymond H., Wen, You-wei

论文摘要

从其嘈杂的观察结果中重建低级矩阵可以在许多应用中找到其用法。可以将其重新归类为受约束的核规范最小化问题,其中约束的约束$η$明确给出或可以通过噪声的概率分布来估算。当应用Lagrangian方法查找最小化器时,可以通过单数值阈值操作员获得解决方案,其中阈值参数$λ$与Lagrangian乘数有关。在本文中,我们首先证明了最小化器和观察到的矩阵之间差异的Frobenius规范是$λ$的严格增加函数。由此,我们以$η$表示的$λ$得出了封闭形式的解决方案。当给出$η$时,结果可用于解决约束的核电 - 型最小化问题。对于不受限制的核定型正规化问题,我们的结果使我们能够使用差异原理自动选择合适的正规化参数。所获得的正则化参数可与Stein无偏风险估计器(确定)方法获得的(有时更好)相当,而解决最小化问题的成本可以减少11--18倍。使用合成数据和实际MRI数据进行数值实验以验证所提出的方法。

The reconstruction of low-rank matrix from its noisy observation finds its usage in many applications. It can be reformulated into a constrained nuclear norm minimization problem, where the bound $η$ of the constraint is explicitly given or can be estimated by the probability distribution of the noise. When the Lagrangian method is applied to find the minimizer, the solution can be obtained by the singular value thresholding operator where the thresholding parameter $λ$ is related to the Lagrangian multiplier. In this paper, we first show that the Frobenius norm of the discrepancy between the minimizer and the observed matrix is a strictly increasing function of $λ$. From that we derive a closed-form solution for $λ$ in terms of $η$. The result can be used to solve the constrained nuclear-norm-type minimization problem when $η$ is given. For the unconstrained nuclear-norm-type regularized problems, our result allows us to automatically choose a suitable regularization parameter by using the discrepancy principle. The regularization parameters obtained are comparable to (and sometimes better than) those obtained by Stein's unbiased risk estimator (SURE) approach while the cost of solving the minimization problem can be reduced by 11--18 times. Numerical experiments with both synthetic data and real MRI data are performed to validate the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源