论文标题

在$ \ mathrm {gl} _3 $上的hecke-maass尖forms的傅立叶系数的迹象

On Signs of Fourier Coefficients of Hecke-Maass Cusp Forms on $\mathrm{GL}_3$

论文作者

Jääsaari, Jesse

论文摘要

我们考虑了组$ \ mathrm {sl} _3(\ Mathbb z)$的Hecke-maass尖form的傅立叶系数的符号更改。当基本形式是自动对齐的时,我们表明有$ \ gg_ \ varepsilon x^{5/6- \ varepsilon} $符号变化的系数$ \ {a(m,1)_ {m,1)_ {m \ \ leq x} $,并且对许多自我自我征兆的比例更改为正面形式。关于符号更改的正面比例的类似结果,对于通用$ \ mathrm {gl} _3 $ cusp forme的实值系数$ a(m,m)$也可以得出,这一结果基于新的有效的sato-tate类型定理,用于$ \ m m i \ nathrm {gl} _3} _3 $ cusp cusp fore。另外,在Ramanujan-Petersson的猜想下研究了傅立叶系数的不变。

We consider sign changes of Fourier coefficients of Hecke-Maass cusp forms for the group $\mathrm{SL}_3(\mathbb Z)$. When the underlying form is self-dual, we show that there are $\gg_\varepsilon X^{5/6-\varepsilon}$ sign changes among the coefficients $\{A(m,1)\}_{m\leq X}$ and that there is a positive proportion of sign changes for many self-dual forms. Similar result concerning the positive proportion of sign changes also hold for the real-valued coefficients $A(m,m)$ for generic $\mathrm{GL}_3$ cusp forms, a result which is based on a new effective Sato-Tate type theorem for a family of $\mathrm{GL}_3$ cusp forms we establish. In addition, non-vanishing of the Fourier coefficients is studied under the Ramanujan-Petersson conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源