论文标题

在异质材料中建模裂纹传播:格里菲斯定律,固有的裂纹阻力和雪崩

Modeling crack propagation in heterogeneous materials: Griffith's law, intrinsic crack resistance and avalanches

论文作者

Roy, Subhadeep, Hatano, Takahiro, Ray, Purusattam

论文摘要

包括原子离散性在内的固体中的各种异质性都会显着影响裂缝强度以及故障动力学。在这里,我们研究了离散模型中初始裂纹在异质材料(称为纤维束模型)中断裂的影响。根据初始裂纹大小,我们发现裂缝动力学的三个不同的机制。如果初始裂纹小于某个值,则不会影响破裂动力学和临界应力。尽管对于较大的初始裂纹,但裂纹的生长会导致整个系统的崩溃,而临界应力取决于以非平凡指数的幂律方式的裂纹大小。指数以及限制裂纹大小取决于异质性的强度和系统中的应力松弛范围。

Various kinds of heterogeneity in solids including atomistic discreteness affect the fracture strength as well as the failure dynamics remarkably. Here we study the effects of an initial crack in a discrete model for fracture in heterogeneous materials, known as the fiber bundle model. We find three distinct regimes for fracture dynamics depending on the initial crack size. If the initial crack is smaller than a certain value, it does not affect the rupture dynamics and the critical stress. While for a larger initial crack, the growth of the crack leads to a breakdown of the entire system, and the critical stress depends on the crack size in a power-law manner with a nontrivial exponent. The exponent, as well as the limiting crack size, depend on the strength of heterogeneity and the range of stress relaxation in the system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源