论文标题

改善DES,CHASKEY和现在的差异性神经区分模型

Improving Differential-Neural Distinguisher Model For DES, Chaskey, and PRESENT

论文作者

Zhang, Liu, Wang, Zilong

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In CRYPTO'19, Gohr proposed a new cryptanalysis strategy using machine learning algorithms. Combining the differential-neural distinguisher with a differential path and integrating the advanced key recovery procedure, Gohr achieved a 12-round key recovery attack on Speck32/64. Chen and Yu improved prediction accuracy of differential-neural distinguisher considering derived features from multiple-ciphertext pairs instead of single-ciphertext pairs. By modifying the kernel size of initial convolutional layer to capture more dimensional information, the prediction accuracy of differential-neural distinguisher can be improved for for three reduced symmetric ciphers. For DES, we improve the prediction accuracy of (5-6)-round differential-neural distinguisher and train a new 7-round differential-neural distinguisher. For Chaskey, we improve the prediction accuracy of (3-4)-round differential-neural distinguisher. For PRESENT, we improve the prediction accuracy of (6-7)-round differential-neural distinguisher. The source codes are available in https://drive.google.com/drive/folders/1i0RciZlGZsEpCyW-wQAy7zzJeOLJNWqL?usp=sharing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源