论文标题

最大覆盖位置问题的公平性

Fairness in Maximal Covering Location Problems

论文作者

Blanco, Víctor, Gázquez, Ricardo

论文摘要

本文提供了一个一般的基于数学优化的框架,以从设施的角度到离散和连续的最大覆盖位置问题,整合公平措施。在此问题中构建函数公平性的主要成分是:(1)有序加权的平均操作员,这是一个非常流行的聚合标准系列,可以解决多目标组合组合优化问题; (2)$α$ - fairness运营商允许概括大多数股权措施。得出了一般数学优化模型,该模型捕获了最大覆盖位置问题中公平性的概念。首先将模型作为离散和连续位置空间的混合整数非线性优化问题。使用该问题的几何特性得出了合适的混合整数二阶优化重新制定。最后,本文结束了在实际数据集上大量计算实验中获得的结果。获得的结果支持拟议方法的便利。

This paper provides a general mathematical optimization based framework to incorporate fairness measures from the facilities' perspective to Discrete and Continuous Maximal Covering Location Problems. The main ingredients to construct a function measuring fairness in this problem are the use of: (1) ordered weighted averaging operators, a family of aggregation criteria very popular to solve multiobjective combinatorial optimization problems; and (2) $α$-fairness operators which allow to generalize most of the equity measures. A general mathematical optimization model is derived which captures the notion of fairness in maximal covering location problems. The models are firstly formulated as mixed integer non-linear optimization problems for both the discrete and the continuous location spaces. Suitable mixed integer second order cone optimization reformulations are derived using geometric properties of the problem. Finally, the paper concludes with the results obtained on an extensive battery of computational experiments on real datasets. The obtained results support the convenience of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源