论文标题
最佳阶中心矩界限的耦合推导在指数的最后一个通用渗透中
Coupling derivation of optimal-order central moment bounds in exponential last-passage percolation
论文作者
论文摘要
我们介绍了新的概率参数,以在定向最后一个通用渗透的平面中得出最佳的中央力矩界限。我们的技术基于与模型的增量型变体的耦合,并在I.I.D的背景下呈现。零和近乎平稳边界条件的指数重量。我们方法中的主要技术新颖性是左尾波动上限的新证明,该上限时间为3/2。
We introduce new probabilistic arguments to derive optimal-order central moment bounds in planar directed last-passage percolation. Our technique is based on couplings with the increment-stationary variants of the model, and is presented in the context of i.i.d. exponential weights for both zero and near-stationary boundary conditions. A main technical novelty in our approach is a new proof of the left-tail fluctuation upper bound with exponent 3/2 for the last-passage times.