论文标题
部分可观测时空混沌系统的无模型预测
Bi-algebraicity in the rank one Riemann--Hilbert correspondence via o-minimality
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
For a smooth, projective, complex algebraic variety $X$, the Riemann--Hilbert correspondence establishes a complex analytic isomorphism between the `Betti moduli space' of rank $n$ local systems on $X^\mathrm{an}$ and the `de Rham moduli space' of rank $n$ vector bundles with flat connection on $X$. In the rank one case, C. Simpson precisely characterizes the subvarieties of these moduli spaces that are `bi-algebraic' for this typically transcendental, analytic isomorphism. In this short note, we give a new proof of this characterization of Simpson, using methods from o-minimal geometry. We adapt the o-minimal proof to a p-adic setting, namely that of Mumford curves.